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Biomass thermochemical conversion, often done in fluidized beds, recently gained a lot of attention due to its
potential to efficiently produce renewable liquid fuels. Optimization of reactor design and operating condi-
tions, however, requires a fundamental understanding of bed dynamics. In this work, a numerical framework
based on an Euler–Lagrange approach is developed and used to perform and analyze large-scale simulations
of two- and three-dimensional periodic fluidized beds. Collisions are handled using a soft-sphere model. An
efficient parallel implementation allows one to explicitly track over 30 million particles, which is representa-
tive of the number of particles found in lab-scale reactor, therefore demonstrating the capability of Lagrang-
ian approaches to simulate realistic systems at that scale. An on-the-fly bubble identification and tracking
algorithm is used to characterize bubble dynamics for inlet velocities up to 9 times the minimum fluidization
velocity. Statistics for gas volume fraction, gas and particle velocities, bed expansion, and bubble size and ve-
locity, is compared across the two- and three-dimensional configurations, and comparison with literature
data generally shows good agreement. The wide distribution of gas residence times observed in the simula-
tions is linked to the different gas hold-up characteristics of the gas–solid system.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Biomass thermochemical conversion processes such as gasifica-
tion and pyrolysis hold great promise for the production of second
and third generation biofuels and will play a determining role in
meeting the U.S. renewable fuels targets set for the next 20 years.
However, current technologies face significant challenges, noticeably
increasing the risks associated with the development of industrial-
scale facilities. In gasification for example, a major contribution to
the overall process cost comes from the necessary clean-up and con-
ditioning step before the syngas can be used for liquid fuel synthesis
[1]. To ensure that biomass-derived fuels become cost-competitive
in the short term, optimization of reactor design and operating condi-
tions, based on a fundamental understanding of the dense gas–solid
reactive mixture, is essential and has to take advantage of the remark-
able progress in multiphase computational fluid dynamics (CFD).

Fluidization is a process of choice for biomass conversion [2], and
therefore, will be the focus of the present work. There are two main
approaches to simulate the dense particulate flows encountered in
fluidized bed reactors. Utilizing the analogy with a fluid, Eulerian
methods are built on the assumption that the solid and gas phases
are two inter-penetrating media. Computationally affordable, and

therefore well-suited for large-scale reactor simulations, they howev-
er require the introduction of numerous assumptions and models to
describe the evolution of the solid phase and its coupling with the
surrounding gas phase. Most derivations of the governing equations
use the kinetic theory of granular flows [3] to formulate closure
models for unclosed terms, which can become challenging, especially
when dealing with evolving polydisperse systems [4]. An alternative
and very promising approach solves for the moments of the joint
probability density function of particle position and velocity using,
for example, closures based on a quadrature strategy (quadrature
method of moments (QMOM) [5,6]).

On the other hand, the Lagrangian particle tracking (LPT) ap-
proach, also called discrete particle method (DPM), represents the
disperse phase by considering each particle independently and solv-
ing for their trajectories. The explicit consideration of the individual
particles allows for a convenient implementation of detailed models
of their chemical and physical evolution, but at a relatively high com-
putational cost, which restricts its range of application. A major con-
tribution to the overall cost of this approach comes from the
representation of collisions between particles. Several techniques
have been developed to handle collisions, the most commonly used
being the event-driven hard-sphere model [7,8], and the soft-sphere
model based on the analogy between two particles colliding and a
spring-dashpot-slider system [9,10]. An alternative approach, the
multiphase particle-in-cell (MP-PIC) method, solves for the particle
distribution function by tracking parcels of particles, and assumes
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that the collision forces are proportional to the gradient of a function
of the particle volume fraction [11,12]. More details can be found in
the review by Deen et al. [13]. Lagrangian techniques have been ap-
plied to numerous problems, including sedimentation [14], bubble
formation [15,16], or segregation in a binary system [17–19]. Also,
they provide a natural framework to develop and investigate the va-
lidity of Eulerian modeling assumptions, such as particle velocity dis-
tribution, particle pressure, or granular temperature [20,21].

Validation of the numerical results, while essential for model de-
velopment, proves to be especially challenging, since flow visualization
and measurements are noticeably difficult to perform in fluidized beds.
A review of existing experimental techniques to measure gas–solid dis-
tribution influidized beds can be found in VanOmmen andMudde [22].
These techniques include direct visualization of two-dimensional or di-
lute systems, tomography (electric capacitance or nuclear) to obtain
voidage distribution of a cross-section of the bed, optical and capaci-
tance probes, and pressure and acoustic measurements using pressure
taps.

Most measurements have been done in pseudo-2D beds using digi-
tal imaging techniques. A non-exhaustive list includes thework of Gold-
schmidt et al. [23,24] for mono- and bi-disperse systems, providing
experimental segregation rate, and instantaneous and time-averaged
particle distributions at inlet velocities up to twice the minimum fluid-
ization velocity. The latter results were qualitatively compared to a dis-
crete particle and a two-fluid simulation. The observed differences
between both numerical approaches were attributed to the lack of par-
ticle rotation in the two-fluid model. Hoomans et al. [25] obtained par-
ticle velocity maps, occupancy plots and speed histograms from
Positron Emission Particle tracking in a bed fluidized at 1.5 times the
minimum fluidization velocity, and highlighted the importance of the
collision parameters in LPT simulations to correctly reproduce experi-
mental data. Particle Image Velocimetry, coupled with digital image
analysis, was used to obtain time-averaged particle fluxmap and segre-
gation rate in a bi-disperse two-dimensional bed byDeen et al. [17], and
results were compared with a LPT simulation. Busciglio et al. [26,27]
used a digital image analysis technique to extract quantitative informa-
tion on bed expansion, and bubble hold-up, size evolution, distribution,
density, aspect ratio, and rising velocity from a series of fluidization ex-
periments in a pseudo-two dimensional reactor in which the inlet ve-
locity was varied from 1.7 to 7 times the minimum fluidization
velocity Umf. Experimental data were appropriately reproduced by an
Eulerian–Eulerian two-dimensional simulation of the reactor.

Detailed measurements other than pressure fluctuations in three-
dimensional reactors are much scarcer. Among these, Kawaguchi et
al. [28] measured the particle velocity distribution in a cylindrical
spouted bed using nuclear magnetic resonance imaging (NMR Imag-
ing or MRI), and compared it to a hybrid 2D (for the flow)–3D (for
the particle motion) LPT simulation. Van der Lee et al. [29] used X-
ray fluoroscopy to determine the average bubble diameter in a cylin-
drical reactor. They showed that the experimental results agreed well
with the correlation by Werther et al. [30]. Heindel et al. [31] used
digital X-ray radiography and stereography imaging to visualize and
time-resolve 3D flow structures in multiphase and opaque fluid
flows. The technique has been used to investigate gas holdup in a cy-
lindrical fluidized bed reactor containing two different materials,
glass beads and ground walnut shells [32], and in a reactor with a
side jet [33,34]. Time-averaged gas volume fractions and bed height
were compared to two- and three-dimensional Eulerian simulations
[32,34]. Both numerical works included a grid refinement study, and
looked at the impact of the drag model on gas hold-up.

Since most measurements are available only in pseudo-two dimen-
sional reactors, with a third direction usually several particle diameter
wide, two main questions arise, namely the capability of 2D models to
represent the pseudo-2D experiments, and the appropriateness of 2D
or pseudo-2D configurations to study flow dynamics of fully 3D reac-
tors. Using a two-fluid model to simulate a pseudo-2D reactor, Peirano

et al. [35] reported a significant difference in bed height between 2D
and 3D results, the 2D bed height being much larger. They linked the
discrepancy to differences in maximum packing. A more comprehen-
sive study was conducted by Xie et al. [36], again using an Eulerian ap-
proach. Cylindrical and box reactors were both considered, and in
contrast to the work cited above, the third direction was wide enough
for structures to fully develop. Differences between two and three di-
mensions increased significantly as the inlet velocity was increased.
Again, the 2D Eulerian model was shown to over-predict bed height
and gas velocities. A budget analysis [37] highlighted the role of non-
axial terms in the observed differences, these terms becomingmore im-
portant at higher velocities.

In the present work, a Lagrangian particle tracking approach is
used to investigate the dynamics of fluidized bed reactors. The re-
duced number of necessary assumptions, the ease of implementation
of particle models and the potential for LPT simulations to provide a
convenient framework for Eulerian model development and testing
motivated this choice. The numerical methods employed to solve
the gas phase governing equations are tailored for turbulence, and
therefore applicable to the complex three-dimensional flows expected
during high velocity fluidization. The numerical tool's very good con-
servation properties, efficient parallel structure, and advanced use of
Message Passing Interface provide the ideal setting to demonstrate
the feasibility of large-scale simulations of fluidized bed reactors
using LPT. A fundamental approach is followed, focusing on periodic
configurations to extract the intrinsic dynamics of fluidized beds.
Two and three-dimensional cases with different fluidization veloci-
ties are considered, allowing for a detailed comparison of the bed
statistics. A bubble identification and tracking algorithm provides
quantitative information on bubble number, size, and velocity. The
mathematical description of the problemwill be given first, followed
by the numerical methodology employed. The configurations and
simulation parameters will then be provided. Finally, results will be
presented and discussed.

2. Mathematical description

The gas phase is modeled as a Newtonian fluid assumed to follow
the low Mach number Navier–Stokes equations, while the dispersed
phase is treated as a collection of individual particles that move
according to Newton's second law. In this work, the fluidized beds
are considered non-reactive in order to focus on cold flow dynamics.
The two phases are strongly coupled through momentum exchange
at the surface of each particle. Since some regions in a fluidized bed
reactor may be near the close-packing limit, particle collisions are
critical to predicting bed dynamics and are therefore taken into ac-
count. The gas phase equations are first discussed, followed by the
particle equations. Then, the coupling terms between gas and solid
phases are described. Finally, the collision model is presented.

2.1. Gas phase description

The detailed description of the gas–particle system involves the
classical Navier–Stokes equations for the gas phase, Newton's laws
of motion for the particles, and no-slip, no-penetration boundary con-
ditions at the surface of each particle. This approach would require
that the flow around each particle be resolved, which is prohibitively
expensive for the scales of interest here. In order to account for the ef-
fect of the particles in a tractable manner, a point-particle assumption
is introduced, allowing the gas phase equations to be filtered. Several
strategies can be used for that purpose. In particular, Anderson and
Jackson [38] derive a set of equations using local volume averaging.
In their work, the averaging volume is chosen such that it is signifi-
cantly larger than the particle volume, while ideally remaining smal-
ler than the smallest macro/mesoscopic phenomena of interest.
Another strategy based on ensemble averaging is proposed by
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Zhang and Prosperetti [39], which leads to very similar equations. Re-
gardless of the strategy followed, the locally averaged gas phase evolu-
tion equation takes the form of a variable density, low Mach number
Navier–Stokes equation,modified to take into account the effective vol-
ume occupied by the particulate phase, with the addition of a volumet-
ric source term to account for momentum exchange with the particles,
as well as unclosed stresses due to the averaging operation. Several ap-
proaches have been proposed for handling these unclosed terms, such
as combining them with the stress tensor [38], accounting for them
through the introduction of an effective viscosity [39,14], or simply
neglecting them altogether [40]. In this work, these additional unclosed
stresses are neglected. Consequently, unless specified otherwise, all var-
iables can be considered to be locally volume-averaged quantities over a
characteristic volume V, chosen to be at least an order of magnitude
larger than the particle volume Vp.

Conservation of mass is written

∂
∂t εfρf

! "
þ∇· εfρf uf

! "
¼ 0; ð1Þ

where uf is the fluid velocity, ρf is the fluid density, εf is the local vol-
ume fraction of fluid, and t is time. Similarly, conservation of momen-
tum is written as

∂
∂t εfρf uf

! "
þ∇· εfρf uf uf

! "
¼ ∇·τþ εf ρf g−F inter; ð2Þ

where g is the gravitational acceleration, Finter is the interphase mo-
mentum transfer term between the particles and the fluid, which is
described in Section 2.3, and τ is the stress tensor. The stress tensor
is defined by

τ ¼ −pIþ σ; ð3Þ

where p is the hydrodynamic pressure and σ is the viscous stress ten-
sor, defined by

σ ¼ μ ∇uf þ∇uT
f

! "
−2

3
μ∇·uf I; ð4Þ

with μ the dynamic viscosity.

2.2. Solid phase description

The position of individual particles evolves according to

dxp
dt

¼ up; ð5Þ

where xp is the position of a particle and up is its velocity, which,
according to Newton's second law of motion, obeys

mp
dup

dt
¼ f inter þ Fcol þmpg: ð6Þ

In the previous equation,mp is the mass of the particle, defined by
mp=πρpdp3/6 where ρp is the particle density and dp is the particle di-
ameter. Fcol is the particle collision force, which is described in Sec-
tion 2.4. finter is the momentum exchange term for a single particle,
related to Finter through

F inter ¼ 1
V ∑

np

i¼1
f interi ; ð7Þ

where np is the number of particles in the volume V.

2.3. Interphase exchanges

The force finter that couples the particle and the gas phase comes
from the momentum exchange at the particle surface due to the
boundary conditions, namely

f inter ¼ ∫∂Vp
τ′⋅ndS: ð8Þ

In the previous relation, τ′ is the pointwise (i.e. non-averaged)
fluid stress tensor, and n is the normal vector to the particle surface
∂Vp. Since the fluid variables have gone through an averaging proce-
dure, τ′ is not readily available, and modeling assumptions need to be
introduced. A typical strategy is to write τ′=τ+τ″, where τ″ is the
difference between the pointwise and the averaged stress tensor. As-
suming that this difference is due to the presence of the particle, the
surface integral of τ″ corresponds then to the drag force, i.e.

f inter ¼ ∫∂Vp
τ·ndSþ f drag: ð9Þ

The locally averaged fluid stress tensor does not vary significantly
on the scale of the particles, hence one can write

f inter ¼ ∫Vp
∇·τdV þ f drag≈Vp∇·τþ f drag: ð10Þ

As pointed out by Kafui et al. [41], this formulation is in agreement
with the classical two-fluid model equations, and is equivalent to
writing finter= fdrag while multiplying the stress tensor by εf in Eq. 2.

The drag force on a particle fdrag normalized by the drag force on a
single, isolated sphere in a Stokes flow, is assumed to be a function of
the local gas volume fraction and particle Reynolds number Rep only.
Accordingly,

f drag

mp
¼

18μεf
ρpd2p

uf−up

! "
F εf ;Rep
! "

: ð11Þ

The dimensionless drag force coefficient F is taken from the work
by Beetstra et al. [42], who developed a correlation valid for a wide
range of Reynolds numbers and particle volume fractions,

F εf ;Rep
! "

¼ 10
1−εf
ε2f

þ ε2f 1þ 1:5
ffiffiffiffiffiffiffiffiffiffiffiffi
1−εf

q! "

þ
0:413Rep

24ε2f

ε−1
f þ 3εf 1−εf

! "
þ 8:4Re−0:343

p

1þ 103 1−εfð ÞRe−0:5−2 1−εfð Þ
p

0

@

1

A; ð12Þ

where the particle Reynolds number is defined by

Rep ¼
ρf dp uf−up

$$$
$$$

μ
: ð13Þ

2.4. Collision model

As mentioned above, several approaches can be used to describe
collisions, including volumetric, hard, and soft-sphere models. In
this work, the soft-sphere model, illustrated by Fig. 1, is chosen for
scalability and accuracy reasons.

When two particles are close to each other or slightly overlapping,
a repulsive force is created, whose magnitude depends on the dis-
tance between the two particles, their relative velocity, a spring stiff-
ness, and a damping parameter. Such a model dynamically prevents
particles from overlapping when approaching the maximum packing
limit. Accordingly, the repulsive force on a particle a due to a collision
with a particle b can be written

f col
b→a

¼ kδ−η ua−ubð Þ⋅nð Þn if dabb ra þ rb þ λð Þ;
0 else:

%
ð14Þ

In this expression, ra/b is the radius of particle a/b, dab is the distance
between the centers of the particles a and b, δ is the overlap between
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the particles, ua/b is the velocity of particle a/b, and n is the unit vector
from the center of particle b to that of particle a, as illustrated in Fig. 1.
λ is the force range, a small number set to create a collision force
when two particles are close together, but not strictly overlapping yet,
adding some numerical robustness to the collision scheme. k is the
spring stiffness, η is the damping parameter, expressed as

η ¼ −2ln e
ffiffiffiffiffiffiffiffiffiffiffi
mabk

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π2 þ ln eð Þ2

q ; with mab ¼
1
ma

þ 1
mb

& '−1
: ð15Þ

In the above equations, 0beb1 is the restitution coefficient, and
ma/b is the mass of particle a/b. By symmetry, fa→b

col =−fb→a
col . Colli-

sions on the walls of the reactor are handled by treating the walls
as particles with infinite mass and zero radius. The full collision
force that each particle feels can then be expressed as

Fcoli ¼ ∑
particle j

colliding with i

f colj→i : ð16Þ

Note that a similar approach can be used in order to handle inter-
particle friction [10], although it requires time-integrating the tangen-
tial displacement and keeping track of the angular momentum of parti-
cles. Because of the added computational cost, it was decided not to
include tangential inter-particle motion. Since we are interested in
ideal rigid spheres, such an assumption is not expected to affect the va-
lidity of our results significantly, especially at higher inlet gas velocities.
It might however affect the relevance of our two-dimensional results at
lower inlet velocities.

3. Numerical methodology

3.1. Flow and particle solver

The equations presented above are implemented in the in-house
flow solver NGA [43], an arbitrarily high order multi-physics CFD
code for large eddy and direct numerical simulations. This code has
been used in numerous studies for combustion-related applications,
including liquid atomization [44–47], spray dynamics, spray combus-
tion [48], premixed, partially-premixed, and non-premixed turbulent

jets [49,50] and combustion in technical devices, such as large-scale
furnaces [51], internal combustion engines, and aircraft engine after-
burners. NGA solves the low-Mach number Navier–Stokes equations
using a fully conservative finite difference scheme of arbitrarily high
accuracy. For all simulations presented below, the computations are
performed using second order accuracy in space. Time advancement
is accomplished using the second order accurate semi-implicit
Crank–Nicolson scheme of Pierce and Moin [52]. Based on a fractional
step approach [53], this algorithm uses both temporal and spatial
staggering between velocity and volume fraction, as illustrated in
Fig. 2. The details on the mass, momentum, and energy conservative
finite difference scheme are available in [43].

Because we rely on a pressure projection step to ensure mass con-
servation, an efficient and robust Poisson solver is key to ensuring the
performance of the NGA code. Here, the black-box multigrid (BBMG)
solver of Dendy [54] is used. The implementation of the BBMG follows
the three-dimensional description introduced in Dendy [54]. The re-
laxation step consists of an 8-color Gauss–Seidel, which is most natu-
ral to parallelize with 27-point stencils in three dimensions. The finest
grid level is partitioned using the same domain decomposition strat-
egy as in NGA, and the domain decomposition of coarser grid levels
simply follows from the finest decomposition. Finally, the BBMG
was introduced as a preconditioner to a conjugate gradient solver.
The full solver is ideally suited for solving the Poisson equation effi-
ciently on parallel architectures.

The particle equations consist of a set of six coupled ordinary dif-
ferential equations per particle, which are solved using a second-
order Runge–Kutta scheme. The particles are distributed among pro-
cessors based on the underlying domain decomposition of the gas
phase domain. After each time-step, they undergo an inter-processor
communication step as they move from one processor sub-domain to
another. The computation of the collision force requires measuring
inter-particle distances, which leads to an O(Np

2) problem if imple-
mented using a brute-force strategy. Instead, NGA makes use of the
underlying computational mesh in order to speed up the identifica-
tion of likely collision partners: for each particle p, we identify the
computational cell ip, jp, kp that it belongs to. For this cell and its clos-
est 26 neighbors, we then loop over all particles p′ in that cell, and
test whether p and p′ are colliding. The computational cells are
large enough to ensure all collisions are captured using this approach.
Note that NGA also relies on ghost particles in order to facilitate the
parallel implementation of the collision force. These ghost particles
correspond to particles located inside ghost cells, and they are com-
municated between processors like any Eulerian variable.

Fig. 1. Soft-sphere representation of a particle–particle collision using a spring-dashpot
model.

Fig. 2. Staggered variable arrangement in NGA.
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3.2. Two-way coupling

The solid particles and the gas phase are explicitly coupled
through the Finter term in Eqs. 2, 6, and 7, and through the volume
fraction in Eqs. 1 and 2. In addition, the particle drag is affected by
the local gas velocity and stress tensor.

Particles are updated before each new flow solver time-step, out-
side of the Crank–Nicolson subiterations. Consequently, the temporal
accuracy of the coupling between particles and gas phase is limited to
first order. However, temporal errors are unlikely to be significant,
considering the small time-step size typically used in order to resolve
particle collisions. The choice of time-step size is detailed in
Section 3.3.

To interpolate the gas phase values to a particle position, a second
order trilinear interpolation scheme is used, based on the convolution
of linear interpolations in each spatial direction. The mapping of par-
ticle properties to the Euler mesh, needed for example in Eq. 7, is usu-
ally done using trilinear extrapolation as well [12,14]. However, if the
ratio of particle diameter over mesh size is too large, this extrapola-
tion method can produce significant oscillations in the extrapolated
data, leading to numerical instabilities. In addition, standard trilinear
extrapolation is not a conservative operation. Instead, a more accu-
rate method is employed here, that relies on a mollification approach
to smoothly and conservatively extrapolate the particle force onto the
gas phase mesh. The particle force is transferred onto the flow solver
mesh using a mollification kernel ζ with characteristic size δ, as
shown in Fig. 3(a) ζ is a vanishing function defined by

ζ sð Þ ¼ 1
4
s4−5

8
s2 þ 115

192
if s≤ 0:5

ζ sð Þ ¼ −1
6
s4 þ 5

6
s3−5

4
s2 þ 5

24
sþ 55

96
if s≤ 1:5

ζ sð Þ ¼ 2:5−sð Þ4

24
if s≤ 2:5

ζ sð Þ ¼ 0 else;

8
>>>>>>><

>>>>>>>:

ð17Þ

where s=|x|/δ is the scaled distance from the particle center (see
Fig. 3(a)). The characteristic length δ is taken as the gas phase mesh
size Δx. Consequently, the particle force is typically spread out over
the 27 nearest cells surrounding the particle. The extrapolated force
at each grid node i, ˜f interi is obtained from the particle force using

f̃
inter
i ¼ γif

inter ð18Þ

with

γi ¼

∫
Vi

ζ sð Þds

∑
all cells j∫

Vj

ζ sð Þds;
ð19Þ

where Vi is the volume of cell i, and the sum in the denominator is
conducted over all cells inside the support of the mollification kernel.
The normalization ensures that the particle force is conserved when
transferred to the gas phase (i.e. ∑γi=1 for each particle). An accu-
rate implementation of the mollification approach depends on the ac-
curacy of the numerical computation of the integrals in Eq. 19. Here, a
numerical integration scheme based on Gauss quadrature is used,
providing spectral accuracy for the evaluation of the integral. This
technique efficiently provides a high order, fully conservative strategy
for transferring particle data back to the underlying Eulerian mesh.
This approach is employed both for creating the interphase exchange
term Finter and the gas volume fraction εf. More details can be found in
Desjardins and Pepiot [55].

3.3. Resolution criteria

The gas phase equation is written for locally volume-averaged
quantities, where the characteristic averaging volume V has to be at
least an order of magnitude larger than the volume of a particle Vp,
say V∼10Vp. Therefore, the smallest possible structure that can be
expected to arise in the gas phase will be limited to a characteristic
volume of about 10Vp. Consequently, the gas phase equations should
be fully resolved spatially if the mesh size Δx is chosen such that
Δx∼ 10π=6ð Þ1=3dp∼1:74dp. This represents the finest mesh size for
the point particle approach described above to remain valid.

Out of all the Courant–Friedrichs–Lewy (CFL) conditions, the most
stringent constraint is given by particle interactions, which are con-
trolled both by a particle-specific CFL, as well as by the characteristic
collision timescale. First, a particle CFL number can be defined by

CFLp ¼
Δtp up

$$$
$$$

dp
; ð20Þ

where Δtp is the particle time-step size. It characterizes what fraction
of its diameter a particle moves in a time step. In order to limit the
inter-particle overlap, it is necessary to keep this number small, and
0.1 is the upper limit that we will use in all the simulations. Then,
the particle integration time step is also limited by the characteristic
collision timescale,

τcol ¼ 2
ffiffiffiffiffiffiffiffi
mab

k

r
: ð21Þ

(a)

(b)

Fig. 3. Extrapolation of a particle quantity onto the gas phase mesh. (a) Distribution of
the particle data onto the surrounding cells based on a distance function. (b) Mollifica-
tion kernel ζ.
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However, a realistic value of k would lead to a computationally in-
tractable problem. Instead,Δtp ≤ τcol=5 is used to define k, whileΔtp is
chosen by considering CFLp ≤ 0.1. This ensures that the inter-particle
overlap is limited to at most a few percent of the diameter, while en-
suring that collisions are fully resolved.

4. Configuration and simulation parameters

The fluidization of solid spherical particles in simple configura-
tions is considered in this work. The particle density and diameter
match the synthetic olivine sand currently used at the National Re-
newable Energy Laboratory (NREL) in a new 4 in. fluidized bed reac-
tor designed to study biomass gasification and pyrolysis [56]. Gas
properties are those of nitrogen at room temperature. The corre-
sponding physical parameters are given in Table 1.

Both two- and three-dimensional configurations are being investi-
gated, whose general layout is given in Fig. 4. Arrays of particles in a
simple cubic arrangement with a particle volume fraction of 0.4 ini-
tially fill the bottom part of the computational domain, up to an initial
bed height H0=0.075 m. In the absence of a better macro-scale ref-
erence length, we will make use of H0 for non-dimensionalization
purposes. A uniform velocity profile is imposed at the bottom, and a
convective outflow condition is imposed at the exit. Periodic bound-
ary conditions are imposed on the sides of the domain so that wall ef-
fects on bed dynamics are eliminated and only the intrinsic bubbling
behavior is captured. Particles collide with the top and bottom
boundaries, which prevents them from exiting the domain, and thus
keeps the number of particles in the bed constant.

The grid spacing is about 1.86 times the particle diameter, in accor-
dance to Section 3.3. Thanks to the mollification strategy described
above, the particle–gas coupling remains robust. The computational do-
main has to be wide enough for the structures to freely evolve and grow
across the bed. To find theminimumdomainwidth that satisfies this re-
quirement, a series of increasingly wide two-dimensional domains is
considered, and statistics are collected from fluidization simulations
conducted at constant inlet velocity. The simulation parameters are dis-
played in Table 2 (cases P1 to P5), while the corresponding statistics for
mean gas volume fraction, gas velocity, and fluctuations of gas volume
fraction are shown in Fig. 5. While the two narrowest cases P1 and P2
lead to significant deviation from the reference case P5, no significant
differences in the statistics are observed for the P3 and P4 intermediate
domain widths. However, accounting for the increased computational
cost of considering a larger domain, it was observed that converged sta-
tistics were obtained slightly faster in the P4 case than for P3 configura-
tion. Therefore, the domain width for two-dimensional configurations
is set to the P4 value, while the lower domainwidth of the P3 case is cho-
sen for three-dimensional simulations. Gas inlet velocities were selected
to cover several regimes, from light bubbling to turbulent fluidization.
Following experimental practice, the inlet velocity Uin is expressed as a
factor of the minimum fluidization velocity Umf of the system [3],

Umf ¼
d2pΔρg
150μf

ε3mf

1−εmf

: ð22Þ

In Eq. 22, εmf is the porosity at minimum fluidization, assumed to
be εmf=1−π/6=0.476 for spheres in a cubic arrangement [3]. Due

to the relatively high computational cost of three-dimensional simu-
lations, a single inlet velocity of five times the minimum fluidization
velocity was selected. Parameters for all the simulations conducted
in this work are shown in Table 2 (cases R1 to R5) for the 2D cases,
and in Table 3 for the 3D case. Note that the length of the R4 and R5
reactors, associated with higher inlet velocities, has been increased
to accommodate higher average bed heights.

The simulations were conducted on Red Mesa, which is a new NREL
high performance computing system located at the Sandia National
Laboratories in Albuquerque, NM. Red Mesa is devoted exclusively to
research and development for renewable energy applications. The sys-
tem consists of 1920 2.93 Ghz dual-socket quad core, Nehalem x5570
processor nodes, for a total of 15,360 cores with a peak performance
of 180 TFlops. The scaling properties of the NGA code on this system
were found to be excellent, with more than 85% scale-up efficiency
with 382 million particles on up to 4096 cores. The bubbling process
being highly unsteady in nature, statistical convergence of the results
requires extended computational time. This is especially true in 2D
cases: converged statistics on average required 25 flow-through
times, corresponding to a cost for each two-dimensional cases of
about 25,000 core hours. The more expensive three-dimensional con-
figuration allows for faster statistical convergence, which was consid-
ered satisfactory in about 8 flow-through times. The total cost for this
simulation was close to 250,000 core hours, or 5 days on 2000 cores.
For all cases, statistics are gathered after the initial transient has been
replaced with a statistically stationary bubbling process.

5. Results and discussion

5.1. Visualization

While fluidization processes are notoriously difficult to visualize
experimentally, time and space-resolved simulations offer unrest-
ricted access to the inside of the reactor, and visualization of tangible
variables such as particle location or bubbling activity is an excellent
way to first qualitatively assess the validity of the numerical models.

Fig. 6 shows sequential snapshots of the particles location for the
two-dimensional simulation series R1 to R5, in 50 ms time increments.

Below four times the minimum fluidization velocity, the bed
shows very little activity, with small bubbles forming mostly near
the top of the bed. When increasing the inlet velocity, more bubbles
can be observed, appearing closer to the bottom of the bed and grow-
ing to larger sizes. The total instantaneous volume occupied by bub-
bles increases significantly with the inlet velocity, considerably
raising the average bed height. At Uin=9 Umf, it becomes difficult to
identify separate bubble entities, as very large void regions directly
connect to the gas-filled upper part of the reactor. Bubble bursting
events are well defined at low inlet velocities, with small pockets of
particles being ejected from the bed. However, at higher velocities,
the interface between bed and free-board becomes more blurry, and
particles are carried higher in the reactor. While a comparatively
more intense bubbling activity has been reported at low inlet veloci-
ties [25], the qualitative behavior of the bed when the inlet velocity is
increased is in agreement with experimental observations [27,57].

Fig. 7 shows results from the three-dimensional simulation. An
iso-surface of high gas volume fraction, εf=0.85, is used to visualize
the envelope of bubbles forming inside the reactor. Colored panels
show the gas velocity magnitude.

In agreement with the corresponding two-dimensional simulation
R3, bubbles are formedmostly near the bottom of the bed with an ini-
tial tubular shape, and further expand into mushroom-like shapes as
they rise toward the top of the bed. At any given level in the reactor,
both large and small bubbles co-exist, the smallest ones either disap-
pearing on their own or merging with larger bubbles. Gas velocities
are strongly correlated with the presence of bubbles, but also display
large-scale patterns in the higher part of the bed, likely associated

Table 1
Gas and particle physical characteristics.

Parameter Units Value

Gas density ρf [kg.m−3] 1.13
Gas viscosity μ [kg.m−1.s−1] 1.77e−5
Particle density ρp [kg.m−3] 3300
Particle diameter dp [m] 2.1e−4
Gravity g [m.s−2] 9.81
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with bursting events. Bubbles are smoothly expanding and moving
up the bed, much like in a liquid–gas system.

While overall, the dynamics of the bed as perceived through visu-
alization of the particle positions are qualitatively in agreement with
experimental observations, a more quantitative approach is required
to gain confidence in the accuracy of the numerical models used in
the simulations.

5.2. Bed statistics

Cross-section and time-averaged evolution of the main variables
such as gas volume fraction and gas velocities as a function of the
height in the reactor have been collected until no significant changes
in the statistics were observed. This required around 25 flow-through
times, defined as Lx/Uin, for each 2D simulation, and about 8 flow-
through times for the 3D case. Fig. 8 shows the resulting statistics
for the two-dimensional cases R1 to R5, where the streamwise coordi-
nate has been non-dimensionalized by the initial bed height H0. Note
that the total reactor height for the low velocity cases R1 and R2 was
equal to 2H0, while it was increased to 4H0 for the high velocity cases
R3 to R5.

As the inlet velocity increases, Fig. 8(a) shows that the profile of
mean gas volume fraction changes drastically, from a step function at
3.75 Umf to a quasi-linear increase at the highest velocity simulated.

Average packing in the bed, defined as oneminus themean gas volume
fraction bεN, decreases from a value close to the nominal packing at
minimum fluidization (εmf=0.476) to around 0.25, which is consistent
with the observed bed expansion at higher inlet velocities. Bed height,
while easily defined at low fluidization velocity, is more difficult to ap-
praise at higher velocities. For comparison purposes, bed height is de-
fined here as the streamwise location in the reactor below which 99%
of the particles are found, and is shown in Fig. 9. In addition, error
bars show themaximum and theminimumbed heights over the length
of the simulations. Bed height mean and fluctuations increase with the
fluidization velocity, which is in good agreement with previous studies
[27]. The bed height appears to be slightly larger than that reported by
Busciglio et al. [27], which could be due to the lack of inter-particle fric-
tion in our mathematical model, although the case studied here is no-
ticeably different from theirs.

The mean streamwise gas velocity, shown in Fig. 8(b), exhibits a
high and nearly constant value in the bed at low inlet velocities, and
a linear decrease with streamwise location at higher velocities. In all
cases, the mean gas velocity relaxes toward the expected superficial
velocity, albeit at different heights. Fig. 8(b) also shows the average
value of εfuf, which remains exactly constant through the reactor,
thereby confirming that mass is conserved. Particle axial velocity,
shown in Fig. 8(c), is statistically close to zero, as can be expected
for stationary bubbling fluidized beds.

Fig. 8(d), (e) and (f) display the gas volume fraction, gas stream-
wise, and cross-streamwise velocity variances as function of the posi-
tion in the reactor. While at low inlet velocities, fluctuations are
mostly confined to the vicinity of the top of the bed, where bubble
bursting occurs, large fluctuations can be found throughout the bed
at higher velocities, which is consistent with the observation that
bubbling activity intensifies and extends to the full bed at higher
inlet velocities. Note that while volume fraction fluctuations decrease
to zero above the bed as expected, fluctuations in gas velocity de-
crease to a non-zero value, indicating that the gas phase above the
bed is turbulent.

Another quantity of interest is the correlation between gas volume
fraction and velocity fluctuations, as shown in Fig. 8(g) and (h) for gas
and particle, respectively. A positive value indicates that a locally
larger gas volume fraction is associated with a locally higher stream-
wise velocity. This is the case almost throughout all the beds, except

(a) (b)

Fig. 4. Schematics of the computational domains used in the numerical simulations. (a) Two dimensional. (b) Three-dimensional.

Table 2
Parameters used in the two-dimensional fluidized bed reactor simulations.

Name Reactor dimension (Lx×Ly, [m]) Grid size np Uin

P1 0.15×0.05 384×48 53,138 5 Umf

P2 0.15×0.0625 384×96 79,544 5 Umf

P3 0.15×0.075 384×192 106,276 5 Umf

P4 0.15×0.15 384×384 212,552 5 Umf

P5 0.15×0.3 384×768 425,430 5 Umf

R1 0.15×0.15 384×384 212,552 3.75 Umf

R2 0.15×0.15 384×384 212,552 4 Umf

R3 (=P4) 0.15×0.15 384×384 212,552 5 Umf

R4 0.3×0.15 768×384 212,552 7 Umf

R5 0.3×0.15 768×384 212,552 9 Umf
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at the very top of the slower beds, suggesting as expected that
expanding pockets of gas have a tendency to accelerate upward (bub-
ble rising). The correlation between particle velocity fluctuations and
gas volume fraction is more complex, with a tendency to be positive
inside the bed, and negative around the bed surface. This suggests
that some particles tend to rise inside bubbles inside the bed, leading
to a positive correlation. The negative correlation at the bed surface
corresponds to bubble bursting events, where the gas volume fraction
is higher and particles tend to fall back down toward the bed. Particle

velocity fluctuations, shown in Fig. 8(i) for the streamwise and Fig. 8(j)
for the cross-streamwise velocity, increase with height in the reactor.
Statistics are extremely difficult to converge in the upper part of the
reactor due to the small number of particles ejected from the bed,
which explains the large oscillations observed in the graphs pertaining
to solid particle motion. Finally, dilute regions tend to move faster than
denser regions, as shown by the axial gas velocity conditioned on the
local gas volume fraction in Fig. 8(k) and (l), with the velocity ratio
between dilute and dense regions significantly decreasing as the inlet
velocity increases.

To appraise the differences between two- and three-dimensional
beds, a comparison of the statistical results for an inlet velocity of
5 Umf was carried out, and is shown in Fig. 10.

Some differences can be observed. First, the bed height is about
10% lower and tends to vary less over time in the three-dimensional
case than in two-dimension, as is shown in Fig. 9. This is most likely
caused by the difference in maximum packing, since for example,
face-centered cubic arrangements in 3D leads to a 74% maximum
packing, while it is limited to about 57% in 2D configurations. This
fact has been observed before [35,25], and in particular Van Wachem
et al. [58] proposed several strategies in order to reconcile 2D La-
grangian simulations with experimental results. However, none of
the modifications they proposed recovered all experimental results
successfully. It can also be observed that the magnitude of velocity
fluctuations is larger, and the ratio between the streamwise velocity
in dilute regions and that of denser parts is higher in 3D. This differ-
ence may become important when looking at quantities relevant for
the chemical processes, such as gas residence time inside the reactor.
Note that as expected, 3D statistics in both cross-streamwise direc-
tions are similar (e.g. in Fig. 10(f) and (j)). Overall, first order statis-
tics show good agreement between 2D and 3D. However, second
order statistics tend to show more noticeable departure. This is in
agreement with the prior work of Xie et al. [36,37], who reported in-
creased differences between 2D and 3D at higher fluidization veloci-
ties, which are associated with larger velocity fluctuations.

5.3. Gas residence time

Molecular growth leading to tars during biomass gasification is a
relatively slow process that will be enhanced by increased gas resi-
dence time inside the hot reactor [59,60]. Statistical analysis has
shown significant variation of gas velocity depending on the local po-
rosity εf (Fig. 8). The simulations presented here can be used to better
quantify the variability in residence time of the gas phase. For this
purpose, tracer fluid particles were emitted in a continuous fashion
at the bottom of the bed and transported by the gas phase. The time
needed to reach the mean bed height H was recorded for each of
these tracers, allowing one to obtain a residence time distribution
for all two- and three-dimensional cases. Results are shown in
Fig. 11 for the 2D cases R1 to R5.

In this graph, the x-axis has been normalized by the bulk residence
time tbulk=H/Uin. At low inlet velocities, a very narrow probability
density function (PDF) is obtained, centered around the bulk resi-
dence time. However, as the inlet velocity increases, the PDF widens
considerably on both sides, with some pockets of gasses requiring
more than three times longer or less than a third of the time to exit
the bed compared to the bulk flow.

A comparison of the PDF of residence time between 2D and 3D at
Uin=5 Umf is shown in Fig. 12.

Two situations are considered: filled symbols refer to the residence
time inside the bed (up to x=H), while open symbols refer to the
time needed to reach the top of the reactor (x=Lx=2H0). In the former
case, the longest residence times are similar, while the minimum resi-
dence times recorded are somewhat smaller in 3D. However, if the
time spent in the free-board is taken into account, significantly higher
residence times are obtained in 2D compared to 3D. This may be

0 0.5 1 1.5 2
x/H0

x/H0

x/H0

0.5

0.6

0.7

0.8

0.9

1

1.1

<
ε>

(a)

0 0.5 1 1.5 2

1

1.2

1.4

1.6

1.8

< 
U

 >

<U>
<εU>

(b)

0 0.5 1 1.5 20

0.01

0.02

0.03

0.04

<
ε’2

>

(c)

Fig. 5.Mean gas volume fraction, gas velocity and fluctuations of gas volume fraction as
a function of height in the reactor for different domain widths (P1: thin solid line, P2:
dotted line, P3: dashed line, P4: dash-dotted line, P5:thick solid line).

Table 3
Parameters used in the three-dimensional fluidized bed reactor simulation.

Name Reactor dimension (Lx×Ly×Lz, [m]) Grid size np Uin

3D 0.15×0.075×0.075 384×192 ×192 34,645,976 5 Umf
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explained by the turbulent flow observed above the bed, since the dy-
namics of turbulent flows are inherently 3D, or potentially by differ-
ences in the bubble bursting process at the surface of the bed.

To find an explanation to the increased variance observed in
Fig. 11, the gas volume fraction encountered by the tracer particles
used to evaluate residence times inside the bed (up to x=H) were

recorded and averaged over the trajectory of the tracers, leading to
a path-averaged gas volume fraction εt:

〈ε〉t ¼
1
tres

∫tres
0 ε xtracer tð Þð Þdt: ð23Þ

(a)

(b)

(c)

(d)

(e)

Fig. 6. Particle positions in the 2D periodic fluidized beds R1 to R5. (a) R1: Uin=3.75 Umf. (b) R2: Uin=4 Umf. (c) R3: Uin=5 Umf. (d) R4: Uin=7 Umf. (e) R5: Uin=9 Umf.
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The ensemble-averaged residence times {tres} conditioned on εt
and normalized by the bulk residence time are plotted in Fig. 13 for
all cases considered in this work.

The x-axis is rescaled with the average gas volume fraction in the
bed εbulk. Several important observations can be made. First, the
range of εt increases significantly as the inlet velocity increases,
meaning that the gas entering the reactor will encounter a much
wider range of conditions at high velocities. This was already visible
in Fig. 8(a). Then, gas trapped in bubbles (corresponding to a high
εt) will reach the top of the bed much faster than gas going through
denser parts of the bed (corresponding to low εt). The residence
time appears to depend almost linearly on εt . Finally, when εt is nor-
malized by εbulk, as is done in Fig. 13, all curves seem to collapse on a
single profile, with a larger deviation observed for the lowest inlet ve-
locities. Hence, residence time for all cases investigated here appears
to be a similar function of the departure between the encountered gas
volume fraction and εbulk. This result suggests a similar mechanism
for bubble dynamics, with bubbles allowing for a rapid crossing of
the bed and denser regions trapping gas inside the bed.

5.4. Bubble identification and tracking

The presence of bubbles inherently introduces some inhomogene-
ity in the conditions experienced by the gas entering the reactor. This
non-uniformity is apparent in the large variation of residence times,
shown to be directly related to the local gas volume fraction (Fig. 13).
Instantaneous velocityfields clearly show that the gas entering a bubble
is channeled through it until it reaches the top of the bed, hence
strongly reducing further mixing with the gas in the denser parts of
the bed. As a first step toward a more fundamental understanding
of the role of bubbles during fluidization, especially for reactive sys-
tems, a systematic way to identify and characterize bubbles has been
devised and used to quantify the differences in bubbling behavior for
various regimes.

5.4.1. Methodology
In this work, the method used by Herrmann [61] to identify liquid

droplets in primary atomization simulations has been applied to bubble
identification. A brief summary of the parallel version of the algorithm
is given here, the reader being referred to Herrmann's work for more de-
tails. At each time step, the Eulerian gas volume fraction is computed
from the location of the Lagrangian particles using the mollification ap-
proach described in Section 3.2. A grid cell is then assumed to be part of
a bubble if its gas volume fraction is greater than a pre-defined threshold,

εf Nεf ;cut−off : ð24Þ

The first step in the bubble identification algorithm is for each pro-
cessor to assign a unique tag to each contiguous region satisfying
Eq. 24. This is accomplished using a banded approach: when an
untagged cell is found, it is assigned a tag, and this tag is propagated
to surrounding cells if they match the cutoff criterion as well. A look-
up table is then created to allow fast access to all grid cells belonging
to a given structure. Since large bubbles are likely to span a region
distributed over several processors, a synchronization step is required
to assign the same tag to structures reaching across processors and
periodic boundaries. Once each continuous structure is identified by
a unique tag over the entire computation domain, several key quanti-
ties are computed by looping over the cells associated with this tag,
including total volume defined as

Vb;id ¼ ∑
tagi¼id

Vi; ð25Þ

center of gravity, written

xb;id ¼ 1
Vb;id

∑
tagi¼id

xiVi; ð26Þ

and moments of inertia as

Iid ¼

∑tagi¼id Vi y2i þ z2i
! "

−∑tagi¼id Vixiyi −∑tagi¼id Vixizi

−∑tagi¼id Vixiyi ∑tagi¼id Vi x2i þ z2i
! "

−∑tagi¼idViyizi

−∑tagi¼id Vixizi −∑tagi¼id Viyizi ∑tagi¼id Vi x2i þ y2i
! "

2

6664

3

7775:

ð27Þ

Vi and xi are the volume and Cartesian location of gas cell i, respec-
tively. The bubble volume Vb is chosen to be the physical volume
formed by all contiguous cells satisfying Eq. 24, ignoring the particles
trapped inside the bubble. The principal axes and principal moments
of inertia of each structure are obtained from an eigenvalue/eigenvec-
tor analysis and are used to construct an equivalent ellipsoid with the
same moments of inertia, which radii are defined as

aid ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5
2
I1;id þ I2;id þ I3;id

Vid

s

; ð28Þ

bid ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5
2
I1;id þ I2;id þ I3;id

Vid

s

; ð29Þ

cid ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5
2
I1;id þ I2;id þ I3;id

Vid

s

; ð30Þ

I1, I2, and I3 being the principal moments of inertia of the bubble
“id”. An example of bubble identification and shape characterization
is given in Fig. 14 in a two-dimensional case. εcut−off is set to 0.85
for all simulations presented in this work. While the exact value of
this cut-off parameter is quite arbitrary, it was found to little affect
bubble statistics thanks to sharp interfaces between bubbles and
dense phase. Once a bubble becomes connected to the freeboard

Fig. 7. Visualization of fluidization in a three-dimensional periodic fluidized bed with
an inlet velocity Uin=5Umf: iso-surface of gas volume fraction εf=0.85 and gas velocity
magnitude.
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region above the bed, it is removed from the list of bubbles. Particle
positions and iso-contours of εf=εcut−off are shown in Fig. 14(a)
and (b). Fig. 14(c) shows the results of the identification algorithm:
each bubble is depicted with two arrows aligned with the bubble
principal axes, whose lengths are twice the radii of the equivalent

ellipsoid. A disk with same area as the bubble is drawn at its center
of gravity.

When bubble identification is carried out at a high enough fre-
quency, it becomes possible to track each structure as it evolves
through the bed. A bubble B1 at time t+Δt is assumed to be the

0 1 2 3 4
x/H

0
x/H

0
x/H

0

x/H
0

x/H
0

x/H
0

x/H
0

x/H
0

x/H
0

x/H
0

x/H
0

x/H
0

0.6

0.8

1

<
ε>

0 1 2 3 4

1

1.2

1.4

1.6

1.8

2

< 
U

 >

<U>
<εU>

0 1 2 3 4-0.05

-0.025

0

0.025

0.05

<U
p>

0 1 2 3 40

0.01

0.02

0.03

0.04

<
ε’2

>

0 1 2 3 40

0.5

1

1.5
<u

’2
>

0 1 2 3 40

0.5

1

1.5

<v
’2

>

0 1 2 3 4

-0.05

0

0.05

0.1

<
ε’

u’
>

0 1 2 3 4

-0.015

-0.01

-0.005

0

0.005

0.01

<
ε’

u
p’

>

0 1 2 3 40

0.1

0.2

0.3

<u
p’2

>

0 1 2 3 40

0.1

0.2

0.3

<v
p’2

>

0 1 2 3 40

0.5

1

1.5

2

2.5

<U
 | 

ε<
0.

8 
>

0 1 2 3 4
1

1.5

2

2.5

3

<U
 | 

ε>
0.

8 
>

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Fig. 8. Gas volume fraction and velocity statistics of 2D fluidized beds for different inlet velocities (R1 to R5). From left to right, top to bottom: mean gas volume fraction εf, mean gas
axial velocity, mean particle axial velocity, rms of εf, rms of axial and cross-streamwise gas velocity, correlation of εf and gas axial velocity fluctuations, correlation of εf and particle
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4 Umf (R2, dotted line), 5 Umf (R3, dashed line), 7 Umf (R4, dash-dotted line), and 9 Umf (R5, thick solid line).
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same structure as a bubble B0 at time t if, from all bubbles identified at
time t+Δt, the center of gravity of B1 is the closest from B0's, and they
are not separated by more than a distance dmax taken to be twice the
gas phase velocity at B0's location integrated over the time step. This
rather crude approach proved to be satisfactory in all cases studied
here, allowing to clearly follow the largest structures, from inception
to merging with other bubbles or bursting at the bed surface. If addi-
tional accuracy is needed, tracking the volume of each bubble in addi-
tion to its center of gravity would help in lifting any ambiguity on
bubbles merging, and splitting. Results from bubble tracking for the
3D case are shown in Fig. 15.

The very short, erratic trajectories of the smallest bubbles have
been filtered out to retain only the major bubbling events. In the pre-
sent case for which wall effects have been removed, it is interesting to
note that bubbles are shown to rise to the top of the bed following a
relatively straight trajectory with little lateral displacement.

Both bubble identification and bubble tracking have been used to
collect quantitative informations on bubble dynamics for the two-
and three-dimensional simulations, and results for bubble number,
size, shape, and rise velocity, are presented below.

5.4.2. Bubble statistics
For comparison purposes, an equivalent diameter De is defined for

each bubble as the diameter of the disk (in 2D) or sphere (in 3D) with
an identical volume. Fig. 16 compares the average number and equiv-
alent diameter of bubbles present simultaneously at any given time
for different fluidization velocities. Error bars indicate a variation of
plus and minus one standard deviation about the mean bubble
diameter.

As the inlet velocity increases, both the number and mean diame-
ter of bubbles present simultaneously in the bed increase, which is
consistent with the bed expanding more at higher velocities. The av-
erage instantaneous number of bubbles reaches a plateau beyond
7 Umf, while the average diameter and standard deviation keep in-
creasing. Two contributions to this plateau can be put forward. Bub-
bles, especially at high inlet velocity, become increasingly difficult to
identify at the top of the bed due to the increased probability of
being connected to the free-board above. Then, more instances are
found for which a very large bubble occupies most of the bed for
the highest velocity cases. The average bubble diameter from the 3D
simulation is also shown in Fig. 16, and is found to be very close
from the corresponding 2D case R3.

Probability density functions of bubble size for the various cases
are presented in Fig. 17.

Fig. 17(a) considers bubble equivalent diameter De for the 2D cases
R1 to R5. As the fluidization velocity increases, larger bubbles are creat-
ed, with the largest bubbles at 9 Umf having a diameter up to 3 times
larger than those at 3.75 Umf. As observed elsewhere [27], the probabil-
ity density functions roughly follow a log-normal distribution, whose
variance increases significantly at high inlet velocities. This may indi-
cate an evolution in themerging dynamics. The bubble size distribution
for the 3D case is shown in Fig. 17(b), superimposed on the correspond-
ing 2D results from case R3. While the differences remain small, the
largest bubbles in 3D are comparatively smaller than in 2D, and there
are a larger number of bubbles around the H0/10 scale.

To characterize bubble shapes, aspect ratios were computed for all
2D cases following Busciglio et al. [26] approach, who defined aspect
ratio as the ratio between the bubble maximum horizontal extension
and its maximum vertical extension. Results are shown in Fig. 18.

In agreement with direct visualization of the particle positions,
horizontal elongated bubbles are found at low inlet velocity, while
circular shapes are predominant at higher fluidization velocities. As-
pect ratios at low velocity are higher than the experimentally
reported ones [26], probably because of the lack of friction in the nu-
merical model. The shift of aspect ratios toward more circular shapes
when the inlet velocity increases, which has been observed experi-
mentally but could not be reproduced by the Eulerian model of
Busciglio et al. [27], is adequately recovered here.

Finally, bubbles created in the 3D case are classified based on their
shape. Two different eccentricities are computed from the equivalent
radii of the bubbles: the meridional eccentricity, which relates the
longest to the shortest length

eccm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2−c2

p

a
; ð31Þ

and the equatorial eccentricity, which relates the longest to the sec-
ond longest length

ecce ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2−b2

p

a
: ð32Þ

Eqs. 31 and 32 assume aNbNc. By construction, both are between
0 and 1, and eccm is always larger than ecce. A scatter plot of 3D bub-
ble eccentricities is shown in Fig. 19.

Most bubbles have a tubular shape that evolves into a prolate
shape as the bubbles expand, consistent with the formation of mush-
room-shaped structures.

Empirical work commonly relates bubble rise velocity UB with the
square root of the equivalent bubble diameter De [62–64],

UB ¼ 0:71g1=2D1=2
e : ð33Þ

In Fig. 20(a), this correlation is plotted together with the bubble
rise velocities obtained from the bubble trajectories using central
differencing in the 2D cases R1 to R5.

A small dependence on the inlet velocity is observed, with the bub-
ble rise velocity for a given bubble diameter increasing when the fluid-
ization velocity is increased. For all two-dimensional cases considered,
the rise velocity is found to be smaller than the one estimated from
Eq. 33, but remains roughly proportional to

ffiffiffiffiffiffi
De

p
. Results obtained in 3D

are compared with the equivalent 2D case R3 and Eq. 33 in Fig. 20(b).
While the empirical trend is followed very closely for medium size
bubbles, a larger scatter and higher velocities are found for the larg-
est bubbles. Agreement between numerical results and Eq. 33 how-
ever, remains fair. The observed discrepancy for high diameters
can be explained by the fact that the largest bubbles, found near
the top of the bed, are more likely to connect to the upper part of
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Fig. 9. Bed height as function of the gas inlet velocity: 2D cases R1 to R5 (filled circles)
and 3D case (open square). Error bars indicate maximum and minimum bed height ob-
served during the simulations.
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the reactor, and therefore, are not identified as individual bubbles
anymore.

Correlations have been developed to estimate bubble diameter as
a function of height in the reactor. One of the most successful correla-
tions, used in numerous work [65–67], has been developed by Darton

et al. [68], and relates the average bubble diameter to the gravity, the
excess gas velocity and the height in the reactor, namely

Db ¼ 0:54 Uin−Umf

! "0:4
hþ 4

ffiffiffiffiffiffi
A0

p! "0:8
g−0:2

: ð34Þ
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Fig. 10. Gas volume fraction and velocity statistics of 3D fluidized bed reactor (solid lines), compared with the equivalent 2D configuration R3 (dashed lines). Variables shown are
the same as in Fig. 8.
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In Eq. 34, A0 is the catchment area of the distributor plate, i.e. the
area of plate per orifice. Since in the simulations, a constant velocity is
imposed over the entire inlet, a reasonable choice is to take A0 to be
equal to the grid cell area. This leads to4

ffiffiffiffiffiffi
A0

p
¼ 1:56×10−3m2. Simula-

tion results for the number-averaged bubble diameter andDarton's cor-
relation are shown in Fig. 21(a) for the two-dimensional cases, and a
comparison between two- and three-dimensions at Uin=5 Umf is pre-
sented in Fig. 21(b).

The x-location of the bubbles is assumed to be the location of their
center of gravity. In the two-dimensional cases, a good agreement
was obtained between the numerical results and Darton's correlation
for the highest inlet velocities considered, both for the magnitude of
the diameter and the growth rate. While the growth rate is correctly
reproduced at low fluidization velocities, the simulated bubbles are
smaller than what is predicted by Darton et al. [68], possibly because
of the absence of friction between particles. At 9 Umf, the average di-
ameter significantly decreases when reaching the top of the bed,
which is again explained by the difficulty to correctly identify bubbles
near the top of the bed. The number-averaged bubble diameter in the
3D case is slightly higher than in the corresponding 2D configuration,

and thus, is in excellent agreement with the empirical correlation.
The difference in mean diameter may be again explained in part by
the difference in average gas volume fraction between two- and
three-dimensional cases.

6. Conclusion

A numerical framework for the simulation of fluidized bed reac-
tors using an Euler–Lagrange methodology has been developed and
tested. A soft-sphere model is used to handle collisions, while a mol-
lification algorithm is used to improve the accuracy of the gas–
particle coupling for large particle diameter to mesh size ratios.
The numerical approach followed provides good conservation prop-
erties and a very efficient parallelization, making it suitable for
large-scale simulations involving O(108) Lagrangian particles and
Eulerian grid cells. Bubbling characteristics were also investigated
using an efficient bubble identification and tracking strategy.
Gas residence time distributions inside the bed have been obtained
using tracer particles. Both 2D and 3D configurations have been investi-
gated, each showing qualitatively expected behaviors. An analysis of the
statistics for both 2D and 3D simulations has been carried out, themajor
findings being:

• Discrete particle methods are inherently three-dimensional since
all gas–particle interaction models have been derived for spherical
particles and therefore, are not directly applicable in 2D due to
the different drag laws and packing characteristics of spheres and
cylinders. This results in some arbitrariness in the definition of the
gas volume fraction in 2D that may translate into significant differ-
ences in bed height and mean statistics for both εf and gas velocity;

• Noticeable differences in fluctuation statistics indicate that bed dy-
namics may not be entirely 2D and that inherently 3D dynamics
may exist. This might explain the differences in bubble size and res-
idence time distributions;

• Bubble size distributions roughly follow a log-normal law, the vari-
ances of which increase with inlet velocity. Excellent agreement
was found for bubble rise velocity and bubble mean diameter inside
the reactor between empirical correlations and numerical results
for the 3D configuration. 2D results were able to predict the correct
trends, but tended to under-predict both bubble velocity and
diameter;
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Fig. 11. PDF of normalized residence times in 2D fluidized beds: Uin=3.75 Umf (R1, thin
solid line), 4 Umf (R2, dotted line), 5 Umf (R3, dashed line), 7 Umf (R4, dash-dotted line),
and 9 Umf (R5, thick solid line).
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• Bubble aspect ratios extracted from the 2D simulations reproduce
experimentally observed trends that appeared to elude two-fluid
models;

• The variance of the gas residence time distribution inside the bed
increases significantly when the fluidization velocity increases.
This is accompanied by an increased spread in porosity conditions
encountered by the gas as it travels up the bed. Conditioning the
residence time on the path-average gas volume fraction εt shows
that residence time decreases linearly with the experienced poros-
ity along the trajectory. This is similar for all cases investigated here,
outlining a similar role of dense regions in trapping the gas inside
the bed, and bubbles in propelling it upward.

With fluidization simulations done on up to 34 million particles
and scalability studies on up to 382 million particles, this work high-
lights the potential for Lagrangian particle tracking approaches to
simulate lab-scale systems such as the NREL 4 in. fluidized bed reac-
tor, containing an estimated 200 million sand particles, with a one-
to-one correspondence in terms of particle number. However, the
present approach will be unable to handle larger, pilot or commercial
scale systems without a modified treatment of the solid phase model-
ing. Those include Eulerian approaches, for which improved closure
models can be developed from LPT simulations, or MP-PIC ap-
proaches in the context of large-eddy simulations.

(a)

(b)

(c)

Fig. 14. Example of bubble identification from a snapshot of a two-dimensional fluid-
ized bed simulation. (a) Particle positions. (b) Iso-contour of εf=0.85. (c) Position,
principal axes and equivalent area of identified bubbles.

Fig. 15. Bubble trajectories observed in the 3D simulation: front perspective (top left),
left side (top right), and top (bottom left) views.
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Fig. 16. Instantaneous average bubble number and equivalent diameter De in the bed
for cases R1 to R5. Cross and dashed error bar correspond to the 3D case.
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Fig. 19. Mapping between equatorial and meridional eccentricity of the bubbles iden-
tified in 3D case.
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Fig. 20. 2D vs 3D: bubble rise velocity of the structures shown in Fig. 15: simulation
(symbols) and experimental correlation for single bubbles (line, [62–64]). (a) Compar-
isons between Eq. 33 (solid line) and 2D numerical results (symbols): 3.75 Umf (R1,
filled circles), 4 Umf (R2, open squares), 5 Umf (R3, filled triangles), 7 Umf (R4, open dia-
monds), and 9 Umf (R5, cross). (b) Comparison between Eq. 33 (solid line), 2D (filled
circles) and 3D (open squares) numerical results at 5 Umf.
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