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Direct numerical simulation of dense
particle-laden flows using a conservative immersed

boundary technique

By P. Pepiot† AND O. Desjardins‡

Dense particle-laden flows are challenging to model because of their inherent multi-
physics and multiscale nature. In order to improve our understanding of these flows and
develop efficient simulation strategies, analysis from first-principles is warranted. This pa-
per presents the development and validation of a direct numerical simulation approach
where the flow around individual particles is fully resolved. Based on the recent conser-
vative immersed boundary scheme of Meyer et al. (2010), the approach allows for the
representation of a large number of moving and colliding objects without requiring a
body-fitted grid. Fluid mass is conserved discretely, and momentum is exchanged con-
servatively between the fluid and the particles. This approach provides a second order
accurate drag force on the particles. It is then validated by comparing the drag coefficient
of isolated cylinders and spheres at various Reynolds numbers with theory. The effect of
particle packing on drag is also considered, and good agreement is obtained with previous
studies for both simple cubic and random particle arrangements. Finally, freely moving
particles are simulated, showing a significant departure in drag force with the stationary
case.

1. Introduction

Dense particle-laden turbulent flows are encountered in a vast number of engineering
applications, ranging from pharmaceutical coatings to chemicals synthesis. Of particular
interest to the National Renewable Energy Laboratory are the flows encountered in flu-
idized beds. Indeed, the thermochemical conversion of biomass to biofuels relies heavily
on good mixing properties and homogeneous heating rates. However, dense particulate
systems are especially challenging to model accurately because they involve multiple
physical processes acting over a range of length scales. Micro-scales are dominated by
boundary layers at the surface of the particles and inter-particle collisions, themselves
controlled by complex contact mechanics. Inhomogeneities in the gas-solid system origi-
nate from particle clustering at the meso-scale, and gas bubbles at the macro-scale, for
which the formation mechanism is still unclear.

There are two main modeling approaches suitable for the simulation of reactors. Eu-
lerian methods are built on the assumption that the solid and gas phases are two inter-
penetrating media, and usually use the kinetic theory of gases to derive the governing
equations (Gidaspow 1994). On the other hand, the Lagrangian particle tracking (LPT)
technique uses a Monte-Carlo approach to solve the dispersed phase by considering each
particle independently and solving for their trajectories (Deen et al. 2007). Resolving
down to the particle scale is not affordable for problems of practical interest, which can
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involve billions of particles when considering industrial reactors. Therefore, the particle
scales are usually filtered out, following for example the volumetric averaging procedure
of Anderson & Jackson (1967) or the ensemble averaging procedure of Zhang & Pros-
peretti (1997). The filtering operation introduces an unclosed sub-filter stress tensor in
the gas phase equations that needs to be modeled. These sub-filter stresses are often
ignored, or at best crudely approximated. In addition, the drag force on the particles is
no longer readily available, and needs to be modeled as well. Such drag models typically
account for Reynolds number and particle packing effects, but they ignore other poten-
tial effects, such as particle acceleration, collisions, and sub-filter inhomogeneities in the
flow field. Direct numerical simulation (DNS) is an elegant and accurate way to develop
new models, but it presents significant numerical challenges, especially when considering
non-stationary systems and high particle packing. In this context, immersed boundaries
(IB) approaches can provide a appealing way to describe the gas particle interface.

In this work, the conservative IB formulation of Meyer et al. (2010) has been coupled to
a Lagrangian particle tracking scheme to handle moving objects through the introduction
of a level set function. The approach has been first validated on stationary systems such
as isolated cylinders and spheres, and arrangements of spheres previously investigated
using Lattice-Bolzmann simulations. A simulation of freely moving spheres falling under
gravity is then presented to examine the effect of collisions and finite Stokes number on
the drag forces acting on the particles.

2. Mathematical formulation

2.1. Gas phase

We assume the fluid to obey the low-Mach number Navier-Stokes equations. Because we
are interested in solving the flow past resolved particles, the interaction between fluid
and solid explicitly appears as a boundary condition. Conservation of mass is written as

∂ρ

∂t
+ ∇ · (ρu) = 0, (2.1)

where u is the fluid velocity, ρ is the fluid density, and t is time. Similarly, conservation
of momentum is written as

∂ρu

∂t
+ ∇ · (ρu ⊗ u) = ∇ · τ + ρg, (2.2)

where g is the gravitational acceleration and τ is the stress tensor. The stress tensor is
defined by

τ = −p I + σ, (2.3)

where p is the pressure and σ is the viscous stress tensor, defined by

σ = µ
(

∇u + ∇uT
)

−
2

3
µ∇ · u I, (2.4)

with µ the dynamic viscosity coefficient. Note that in this paper, the gas density and
viscosity are kept constant. Finally, at the surface Sp of each particle p with velocity up,
we can write the no-slip and no-penetration conditions, i.e., u|Sp

= up.
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2.2. Particle phase

We solve for the translational motion of the particles, neglecting the rotational motion.
The position of an individual particle p evolves according to

dxp

dt
= up, (2.5)

where xp is the position of a particle and up is its velocity, which according to Newton’s
second law of motion obeys

mp
dup

dt
= fd + f c + mpg. (2.6)

In the previous equation, mp is the mass of the particle, defined by mp = πρpd3
p/6 where

ρp is the particle density and dp is the particle diameter. fc is the particle collision force,
which is obtained from a soft-sphere collision model, details of which can be found for
example in Deen et al. (2007). fd is the drag force, which can be expressed as

fd =

∫

Sp

τ · ndS. (2.7)

In the previous relation, n is the normal vector to the particle surface Sp.

3. Numerical approach

The equations presented above are implemented in the flow solver NGA (Desjardins et
al. 2008), an arbitrarily high order multiphysics CFD code that uses mass, momentum,
and kinetic energy conserving spatial discretizations. For all simulations presented below,
the computations are performed using second order accuracy in space and time. Time
advancement of the gas phase is accomplished using the semi-implicit Crank-Nicolson
scheme of Pierce & Moin (2001), while the particles are advanced using a second order
Runge-Kutta solver. Coupling between particles and gas is performed once between each
time step.

For conciseness, the full details of the algorithm are not reported here. Instead, we
will provide a brief summary of the computational approach employed. For the details of
the implementation of the conservative immersed boundaries for stationary objects, the
reader is referred to Meyer et al. (2010). The center of mass of each particles is updated
using a Lagrangian particle tracking scheme. From the knowledge of the position and
diameter of each particle, a signed distance function scalar φ is constructed to identify
the particle surface explicitely, i.e.,

φ (x) = min
all particles

(

|x − xp|−
dp

2

)

. (3.1)

The IB algorithm requires the knowledge of the gas volume fraction, particle surface
area, and face apertures for each cell in the computational domain. Whereas several
strategies can be used to compute such quantities, we choose here to triangulate the gas-
solid interface using a marching tetrahedra algorithm to identify the φ = 0 iso-surface.
This approach, while tedious to implement, has the advantage of being purely geometric
and formally second order accurate. The volume fraction and face apertures can then be
readily used to rescale the fluxes in NGA according to Meyer et al. (2010).

In addition, several interfacial fluxes need to be provided in all cut cells. For simplicity,
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they are provided in the form of source terms in the Navier-Stokes equations, and include
(a) the viscous effect on the particle surface

∫

Sp,k

σ · ndS ≈
∫

Sp,k

µ
dut

dn
dS , (3.2)

where Sp,k is the portion of the particle surface in the cell k, n is the curvilinear abscissa
in the normal direction to the surface, and

ut = u − (u · n) n , (3.3)

(b) the convective flux due to particle motion
∫

Sp,k

ρu ⊗ u · ndS , (3.4)

with its counterpart in the continuity equation
∫

Sp,k

ρu · ndS . (3.5)

At the particle surface, the gas velocity is equal to the particle velocity, hence these
fluxes can readily be evaluated. Particle forces are finally created using Eq. 2.7, for which
the viscous contribution can be obtained from Eq. 3.2, and the pressure contribution is
obtained from an additional surface integration. The overall strategy has several benefits;
fluid mass is discretely conserved. Momentum is exchanged in a conservative manner
between the two phases because the flux terms that account for the presence of the
particles in the fluid equations are directly used to create the force exerted by the fluid
on the particle.

4. Stationary cylinders and spheres

4.1. Flow past stationary, isolated cylinders and spheres

The flow past a fixed cylinder is considered first. The two-dimensional computational
domain is 20 dp × 20 dp. A uniform velocity U∞ is imposed on the left boundary. A
convective outflow boundary condition is imposed at the exit, and periodic conditions
are imposed on all other sides of the domain. The Reynolds number, defined as Re =
ρdpU∞/µ is varied by changing the fluid viscosity.

A grid refinement study is conducted to assess the convergence properties of the numer-
ical approach. The Reynolds number is set to 10, which is typical of what is encountered
in fluidized bed reactors. Four configurations are simulated with 6.4, 12.8, 25.6, and 51.2
grid points per diameter, respectively. The finest grid serves as the reference case. The
error on the drag coefficient CD = |fd|/

(

1
2ρU2

∞
Lzdp

)

is reported in Fig. 1. A convergence
between second and third order is obtained. Even with 6 grid points per diameter, an
error of less than 10% is observed, indicating that this approach will allow one to reach
large numbers of particles at a limited computational cost.

Figure 2(a) shows the evolution of the drag coefficient CD as function of the Reynolds
number. The standard drag curve is compared with the simulation results obtained using
12.8 grid points per diameter. The computational domain is the same as described above.
A good agreement is obtained over the range of Reynolds numbers considered in the
study. The drag force is slightly over-estimated at very low Reynolds number, which can
be explained by the increasing role of confinement when viscous effects become dominant.



DNS of dense particle-laden flows 327

Figure 1. Error ε in the prediction of the drag coefficient CD as function of the number of
grid points per diameter n for a stationary cylinder at Re = 10.

(a) Cylinder. (b) Sphere.

Figure 2. Drag coefficient CD for flows over a stationary object at various Reynolds numbers:
Simulations (symbols) and standard drag coefficient curves (line; Clift et al. 1978).

At Re = 100, the Strouhal number St = fdp/U∞, where f is the frequency of the vortex
shedding behind the cylinder, is 0.173 when based on the oscillation of the drag coefficient.
This result is in agreement with the experimental value of 0.165 reported by Williamson
(1992).

A similar study is conducted for flows past a stationary sphere. The computational
domain is now 20 dp × 20 dp × 20 dp, and the sphere is represented using 12.8 grid points
in the diameter. Results for the drag coefficient are shown in Fig. 2(b) and are in very
good agreement with the experimental curve (Clift et al. 1978).

4.2. Flow past sphere arrays

The next step in our validation study is to consider periodic arrangements of spheres.
In this case, as mentioned by Beetstra et al. (2007), the non-negligible volume of the
spheres, along with the forcing used to drive the gas flow, introduces some ambiguity
in the way the Reynolds number and drag force are defined. Therefore, we will start by
carefully defining several quantities of interest.
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The average fluid flow velocity u0 is defined as

u0 =
1

Vf

∫

Vf

u dV , (4.1)

where Vf is the total volume occupied by the gas. The superficial velocity U0 corresponds
to the velocity of the gas were the spheres to be removed, and is related to u0 by
U0 = εu0, with ε being the average gas volume fraction in the computational domain.
In the following, the particle Reynolds number will be based on the superficial velocity
U0

Re =
ρdp|U0|

µ
. (4.2)

The flow past a periodic static array of spheres is maintained using a body force,
which may take the form of a mean pressure gradient. Because computing the particle
drag involves integrating the pressure over the surface of the particle, using such a forcing
pressure gradient will lead to a total force on the particle f t that includes both the drag
force fd and the effect of the mean pressure gradient ∇P . A simple balance of forces
yields fd = εf t (Beetstra et al. 2007). The results reported here are shown in terms
of the drag force fd, non-dimensionalized by the Stokes drag based on the superficial
velocity U0

F =
|fd|

3πµdp|U0|
. (4.3)

The dimensionless drag force is usually assumed to be a function of the Reynolds number
and local gas volume fraction. Note that if the particle is moving, the previous definitions
still apply, provided we switch to the frame of reference attached to the particle.

4.2.1. Simple cubic arrangement

To investigate the effect of packing on the drag force, simple cubic arrangements of
spheres are first considered. The configurations are chosen following the work of Hill et
al. (2001), who used Lattice-Boltzmann (LB) simulations to compute the drag exerted
on periodic arrays of spheres. In each case, the computational domain is a cubic box
containing a single sphere. Periodic boundary conditions are imposed on all six faces.
The dimensions of the box are chosen so that the different packing values used by Hill et
al. (2001) are recovered. A uniform gas velocity is imposed initially, and a body force
term in the Navier-Stokes equations enforced that the integral of the velocity over the
gas phase domain remains constant throughout the simulation. Note that in the work by
Hill et al. (2001), both the Reynolds number and the drag force definitions differ from
the present work, and their results have been transformed accordingly. A comparison of
the obtained dimensionless drag force is shown in Fig. 3. A good agreement is observed
between both simulation results, even if LB values are generally higher. However, they
were obtained using a coarse lattice, and grid refinement was shown to lead to lower drag
forces, which is consistent with our results.

4.2.2. Uniform random arrangement

The next step considers random arrangements of spheres. Spheres are randomly gen-
erated inside a cubic domain of dimension (14dp)

3 according to a uniform distribution.
A few relaxation steps done prior to the start of the simulations permit the removal of
any initial overlap between the spheres. To speed up statistical convergence, a relatively
large number of spheres is used, and each condition is simulated twice. The configuration
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Figure 3. Non-dimensional drag force as function of the particle Reynolds number for sim-
ple cubic arrangements of spheres. Comparison between Hill et al. (2001) (filled symbols) and
present work (open symbols). ε = 0.999 (squares), 0.9859 (circles), 0.799 (triangles), and 0.594
(diamonds).

matrix includes three packing values and three different Reynolds numbers, with the
number of spheres varying between 500 and 1500. The spheres are represented with 12.8
grid points per diameter.

Lattice-Boltzmann simulations of flows past random arrays of spheres have been used
by Beetstra et al. (2007) to derive correlations for the dependence of F in terms of gas
volume fraction and particle Reynolds number. They proposed the following model for
F that is applicable to a wide range of Reynolds numbers and gas volume fractions.

F (ε, Re) =10
1 − ε

ε2
+ ε2

(

1 + 1.5
√

1 − ε
)

+
0.413Re

24ε2

(

ε−1 + 3ε(1 − ε) + 8.4Re−0.343

1 + 103(1−ε)Re−0.5−2(1−ε)

)

.
(4.4)

The dimensionless drag force obtained using the immersed boundary approach is com-
pared to Eq. 4.4 in Fig. 4. The IB simulations match Beetstra’s model fairly well for
Reynolds numbers below 10. However, they depart significantly at higher Re. This was
observed before with a different immersed boundary approach by Subramanian et al.
(2010) and attributed to the forcing technique used in the LB simulations. Less than 2%
scatter is observed across the different replicates of each configuration, indicating that
the number of spheres is large enough to obtain statistical convergence. It would be of
interest to simulate similar flows using more complex random distributions instead of
the uniform distribution considered here. However, this falls outside of the scope of the
present work.

5. Freely falling spheres

Finally, the effect of particle motion on the drag force is investigated. The computa-
tional domain is set to (15dp)

3, and the gas volume fraction is 0.8, leading to a total
of 1330 spheres. Periodic conditions are imposed on all sides. The spheres are initially
arranged in arrays, and a small random particle velocity is imposed to accelerate flow
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Figure 4. Non-dimensional drag force as function of the particle Reynolds number for random
arrangements of spheres. Comparison between the model of Beetstra et al. (2007) (lines) and
present work (symbols). ε = 0.9 (circles), 0.8 (squares), and 0.7 (triangles).

destabilization. The spheres accelerate under gravity, whereas the mean gas velocity is
maintained at zero through a body-forcing term.

The forces are analyzed at a single time after a statistically stationary state is reached.
To analyze local packing and Reynolds number effects, and reproduce the conditions
for which drag models such as the one shown in Eq. 4.4 are applicable, we introduce a
volume filtering procedure (Anderson & Jackson 1967) and define local mean gas phase
quantities. Filtered gas velocity and gas volume fraction are computed for each particle
using a box filter centered on that particle. Three filter sizes are used, 15dp (i.e., the full
computational domain), 7.5dp, and 3.75dp.

The first quantity of interest is the mean drag force averaged over all particles, which
can be compared to Beetstra’s model using the mean Reynolds number and mean gas-
volume fraction extracted from the moving particles simulation, and more interestingly,
to the value obtained from the random stationary simulations. A good agreement with
the latter would indicate that stationary systems are indeed a good representation of
the moving particles configuration, and that particle acceleration and collisions play a
minor role in the determination of the drag force. The comparison is shown in Fig. 5.
Although remaining close, the drag force obtained in the case of moving particles shows
some departure from the static results, therefore confirming that particle acceleration
and collisions can affect the drag forces experienced by the particles. Figure 5 also shows
a scatter plot of the drag force on individual particles, reported as a function of their
individual Reynolds number. Clearly, the direction of the scatter is not aligned with
Beetstra’s model, which predicts that drag increases with the Reynolds number. This
suggests that additional parameters that directly impact the drag force are not accounted
for in the models. These results are obtained with the larger filter, although no significant
differences are observed when using the smaller filter sizes.

Finally, a scatter plot relating the filtered gas volume fraction to the filtered Reynolds
number for all three filter sizes is shown in Fig. 6. When the filter size corresponds to
the domain size, the filtered gas volume fraction is equal to the mean value, whereas the
Reynolds number, a strong function of the particle velocity, varies significantly. As the
filter size is decreased, the spread in the filtered gas volume fraction increases. However,
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Figure 5. Dimensionless drag force as function of the particle Reynolds number with an over-
all gas volume fraction of 0.8. Comparison between the Beetstra et al. (2007) model (line), a
stationary random arrangements of spheres (filled circles, dashed line), and moving spheres (av-
erage value (square) and scatter plot of forces on individual particles (grey dots) obtained using
a filter size ∆ = 15dp.)

Figure 6. Scatter plot of the gas volume fraction and Reynolds number experienced by free–
falling spheres for different filter sizes: ∆ = 15dp (line), 7.5dp (black dots), and 3.75dp (grey
squares).

it is interesting to note that the filtered volume fraction and particle Reynolds number do
not appear to be correlated, meaning that the departure from Beetstra’s model observed
in Fig. 5 cannot simply be explained by a local packing effect.

In summary, these results indicate that finite Stokes effects, collisions and sub-filter
gradients may play an important role in the drag force of a moving particle in a dense
gas-solid flow. This warrants further investigation in order to better understand what
parameters govern particle drag.

6. Conclusions

A conservative immersed boundary scheme has been coupled with a Lagrangian par-
ticle tracking module within the flow solver NGA to provide a general framework for
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the direct numerical simulation of complex gas-solid systems. The method has been used
to investigate dense particle-laden flows in both stationary and non-stationary configu-
rations. The approach has been validated with static flows and shows good agreement
with prior work in the domain. More importantly, it was shown that drag forces experi-
enced by moving particles can depart from stationary cases, on which most existing drag
models are based. Further investigation is required to identify and quantify the causes
of these discrepancies. The numerical tool developed as part of this study paves the way
towards understanding the role played by particle acceleration and collisions as well as
by sub-filter variations in velocity and gas volume fraction.
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