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An alternative way to formulate transportation fuel surrogates using model predictions
of gas-phase combustion targets is explored and compared to conventional approaches.
Given a selection of individual fuel components, a multi-component chemical mecha-
nism describing their oxidation kinetics, and a database of experimental measurements
for key combustion quantities such as ignition delay times and laminar burning veloc-
ities, the optimal fractional amount of each fuel is determined as the one yielding the
smallest error between experiments and model predictions. Using a previously studied
three-component jet fuel surrogate containing n-dodecane, methyl-cyclohexane, and
m-xylene as a case study, this article investigates in a systematic manner how the surro-
gate composition affects model predictions for ignition delay time and laminar burning
velocities over a wide range of temperature, pressure and stoichiometry conditions,
and compares the results to existing surrogate formulation techniques, providing new
insights on how to define surrogates for simulation purposes. Finally, an optimisation
algorithm is described to accelerate the identification of optimal surrogate compositions
in this context.

Keywords: Surrogate definition; chemical kinetics; ignition delay times; laminar flame
speeds; jet fuel

1. Introduction

Incorporating chemical kinetics in computational studies of combustion systems is nec-
essary to understand the combustion characteristics of transportation fuels, address the
problem of combustion control, predict emissions, and optimise engine performance. How-
ever, the inherent complexity of those fuels prevents the direct use of detailed chemical
models, and requires the introduction of a simplified fuel representation. Typically, trans-
portation fuels are modelled using a representative surrogate mixture, i.e. a well-defined
mixture comprised of a few components chosen to mimic the desired physical and chemical
properties of the real fuel under consideration.

For simplicity of exposition, we choose to focus here on gas-phase surrogates for
kerosene, or jet fuel. Yet all methods referenced or developed below are equally applicable
to all fuel types with appropriate, but straightforward changes. Most earlier studies (for in-
stance, [1–6]) defined surrogate compositions by matching the average amount of the major
chemical classes: alkanes, cyclo-alkanes, and aromatics, with typical distribution for jet
fuel being 79%, 10%, and 11% by mole, respectively [7,8]. Following the recommendations
of Violi et al. [4] and Colket et al. [9], the procedure to formulate surrogate compositions
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was subsequently refined (e.g. [10–13]) to additionally reproduce target properties such as
hydrogen-to-carbon (H/C) ratio, density, cetane number, threshold sooting index (TSI), and
average molecular mass between the surrogate and the jet fuel.

Later, Dooley et al. [12–14] put forth the idea of not including every chemical class
present in the real fuel within the surrogate, but rather only those necessary to form interme-
diate species of markedly different potential for radical production and consumption. They
obtained their surrogate by matching the aforementioned combustion targets, except that
they considered derived cetane number over the conventional cetane number. The real fuel
as well as the surrogate mixture were investigated experimentally in several configurations
(such as flow reactors, ignition delays, flame speeds, and extinction limits) and found to
show similar extents of chemical reactivities. Further, Won et al. [15] experimentally found
that surrogates matching the ratio of methyl to methylene functional groups, in addition
to these global targets, reproduce the low temperature kinetic phenomena as well. Their
studies also showed that upon matching combustion property targets, the actual molecular
compositions of the real fuel could be emulated by the surrogate [13], suggesting that
knowing the average chemical structure of the real fuel, appropriate surrogate fuels can be
proposed. Yu et al. [16] advanced such a functional group based approach recently. Through
these studies, the global property targets have been demonstrated as a reliable measure of
the combustion behaviour investigated in these studies for the real fuels.

Despite knowing the experimentally formulated surrogate compositions for kerosene
fuels from the works of Dooley et al. [12–14], many other surrogate mixtures are consid-
ered in practice, motivated by the availability of compact kinetic models to integrate with
computational studies and their accuracy. Besides other approaches [4,13,17], given a set of
components to make up a surrogate, its composition can be determined using a constrained
optimisation algorithm, as was done for example in [11], and more recently in [18]. Sur-
rogate fuel properties are estimated from the individual components using either simple
mole or mass fraction-weighted mixing rules (e.g. H/C ratio) or more complex quantitative
structure/property relationships (e.g. cetane number or TSI, see for example [19]). The
percentage amount of each component is then optimised in order to match as closely as
possible the chosen set of target properties of an average real fuel (e.g. [18]). One must note
that depending on the choice of the number and nature of the surrogate components, it may
not be mathematically possible to match one or all real fuel properties exactly, in which
case choices have to be made on the relative importance of the selected target properties in
the optimisation process.

The procedure outlined above to determine the surrogate composition relies entirely on
the assumption that a clear correlation exists between the fuel composition and the property
of interest that can conveniently be expressed in the form of a mixing rule weighted by the
mass or mole fraction of each component. Depending on the property, such a mixing rule
can reflect a conserved quantity (e.g. atomic composition) or be derived from empirical
observations, which introduces a significant degree of uncertainty in the formulas used
(e.g. cetane number and TSI). In the best case, even if those errors are minimal and an
appropriate surrogate mixture is arrived at, in the context of combustion simulations, it is
not entirely guaranteed that such a surrogate is the best to represent the real fuel, since
uncertainties and model choices that affect the computations significantly have not been
accounted for while defining the surrogate.

This is particularly well acknowledged when considering the reaction mechanisms
used in the simulations – kinetic models of even comprehensively studied fuel components
(typically chosen to constitute surrogates) show some deficiencies and predict different
combustion behaviours. Therefore, a given surrogate composition may yield quite different
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results when employed in combustion simulations depending on the chosen kinetic model.
The objective of the present work is to investigate if this coupling between the surrogate
fuel and the associated kinetic model can be explicitly established at the surrogate fuel
formulation stage itself.

Broadly, the goal is to investigate the following: (i) in the context of combustion simu-
lations, given a complex fuel to model and a set of fuel components, is the conventionally
determined surrogate composition already the one with the best predictive capabilities, or
can better predictions be obtained with a different composition? (ii) If yes, how different
would such a composition be from the conventional one? A direct comparison of these
two options, based on choice of the underlying kinetic model, is the focus of the present
article. Thus, this work serves as a first step to bring in the characteristics and predictive
capabilities of the chemical kinetic mechanism used for the simulations within the surrogate
formulation framework.

To be specific, we explore and analyse a different strategy to define surrogates, in which
model predictions for simple zero and one-dimension configurations over a wide range of
conditions are used to identify an optimal surrogate composition. We begin by introducing
some notations and a graphical framework in Section 2 in order to simplify the analyses to
follow, and use this framework to provide some perspectives on existing procedures to define
surrogate compositions, taking the work of Narayanaswamy et al. [18] on a n-dodecane,
methyl-cyclohexane, m-xylene jet fuel surrogate as reference case. In Section 3, we analyse
for a given kinetic mechanism how the surrogate composition affects the prediction of
experimentally measured jet fuel ignition delay times and laminar flame speeds, and identify
the composition that best reproduces those experimental measurements. Section 4 describes
a nonlinear optimisation algorithm to quickly evaluate the optimal surrogate composition
identified in Section 3, and conclusions are provided in Section 5.

2. Notations and graphical representation

We consider a three-component surrogate mixture containing n-dodecane (NC12), methyl-
cyclohexane (MCH), and m-xylene (XYL). We denote by XNC12, XMCH, and XXYL their
respective mole fractions in the multi-component surrogate mixture. These satisfy the
constraints:

0 ≤ XNC12, XMCH, XXYL ≤ 1 (1)

XNC12 + XMCH + XXYL = 1 . (2)

For ease of analysis, the set of all possible mixtures of n-dodecane, methylcyclohexane,
and m-xylene can be represented in the form of a triangle, as shown in Figure 1.

The edges of the triangle serve as axes for the mole fractions of each of the three com-
ponents, varying from 0 to 1. A point located at a vertex corresponds to a pure component.
Each point inside the triangle corresponds to a different mixture, whose composition can
be obtained by successively projecting it onto each of the three component axes, along a
direction parallel to the edge opposite to the X = 1 vertex associated with this component.
For example, in Figure 1, since XMCH = 1 is found at the top of the triangle, the methyl-
cyclohexane mole fraction of a given mixture is obtained by projecting horizontally onto
the MCH axis. Discretising each edge with N points (N = 11 in Figure 1), we obtain a total
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Figure 1. Graphical representation of all possible compositions of a three-component (n-dodecane,
m-xylene, and methyl-cyclohexane) jet fuel surrogate. Inner mesh illustrates how the resulting com-
position space is discretised using increments of !X = 0.1 (N=11 grid points on each side), and how
to relate a point S inside the triangle to its actual composition.

of:

NG = 1
2
N (N + 1) (3)

surrogate compositions uniformly distributed within the triangle. This discretisation and
triangular representation is used throughout the rest of the manuscript to visualise the
performance of different surrogate compositions.

One such informative visualisation can be done by considering the constrained optimi-
sation approach followed in [18]. In this work, the surrogate composition was determined
by matching as closely as possible (1) the H/C ratio, (2) the cetane number (CN), and (3) the
TSI of an average jet fuel. Jet fuel specifications only provide ranges for those quantities,
and typical values based on several sources in the literature [20–25] are:

H/C = 1.91 ± 0.05,

42 ≤ CN ≤ 47, and

14 ≤ TSI ≤ 26 . (4)

The regions over which each individual constraint is satisfied are shown in Figure 2. To
determine cetane numbers for mixtures of components, in the absence of a more accurate
relationship that describes the interactions between the neat molecules chosen in the surro-
gate and their mixtures, a linear volume fraction weighted mixing rule is used here [26,27],
although this can be less accurate [28,29] because of the nonlinear interactions between
the fuel molecules. Figure 2 demonstrates graphically that there exists a range of composi-
tions for which all constraints applied are satisfied. By construction, the optimal surrogate
determined in Narayanaswamy et al. [18] and denoted by So belongs to the overlapping
region, with a composition of 30.3% n-dodecane, 48.5% methyl-cyclohexane, and 21.2%
m-xylene (by mole%).
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Figure 2. Surrogate compositions satisfying the constraints on cetane number (grey), threshold soot-
ing index (squares), or H/C ratio (black diamonds) as defined in Equation (4). Compositions satisfying
all of them simultaneously are shown in dark, while the surrogate So proposed in Narayanaswamy
et al. [18] is indicated by a solid black circle.

The surrogate So, coupled with the compact multi-component kinetic mechanism also
developed in [18], was shown to satisfactorily reproduce experimental measurements over a
wide range of configurations and conditions. We now propose to quantify and analyse how
the agreement with experimental data could be improved if, instead of using these global
target properties to define the surrogate composition, the experimental data themselves are
used as targets. This is detailed in the next section.

3. Simulation-driven surrogate compositions

3.1. Problem set-up

The following experimental data are chosen as targets:

(1) Ignition delays [30] at φ = 1.0, pressures ranging from 8 atm to 39 atm, and
temperatures ranging from 700 K to 1400 K;

(2) Laminar flame speeds [31] at P = 1 atm, Tu = 403K, and equivalence ratios
0.7 ≤ φ ≤ 1.4.

The surrogate composition space is uniformly discretised using 33 grid points on each
edge, for a total of 561 possible mixtures. For each of these mixtures, ignition delays
at all experimental conditions are computed using the multi-component chemical kinetic
mechanism derived in Narayanaswamy et al. [18] using a component library approach
applied on a series of consistent single-component mechanisms [32–34]. Calculating flame
speeds at several equivalence ratios for such a large number of mixtures is computationally
expensive. Instead, pure component flame speeds are computed over the desired range
of conditions, and are used to estimate the mixtures flame velocities using a previously
validated correlation rule (described in section 4.4.2 of Ref. [18]):

ln SLmix =
3∑

i=1

{
XiNi

T i
ad

T mix
ad

ln SLi

}
, (5)
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Figure 3. Model prediction errors used to evaluate the error functions F mix
ig and F mix

SL as a function
of the actual deviation between the model prediction and the experimental measurement. Standard
deviations are taken as 25% for all ignition delay cases, and ±2 cm s−1 for laminar burning velocities.

where

T mix
ad =

∑3
i=1 XiNiT

i
ad∑3

i=1 XiNi

, (6)

index i = {1, 2, 3} corresponds to the fuel components: n-dodecane, methylcyclohexane,
and m-xylene, respectively, Xi is the mole fraction of the ith component in the fuel mixture,
Ni the total number of moles of products (obtained from the equilibrium composition),
T i

ad is the adiabatic flame temperature, and SLi is the laminar flame speed of the pure
component i. Equations (5) and (6) are evaluated for a fixed equivalence ratio φ, which in
turn, is varied from lean to rich.

3.2. Error measure

The agreement between model predictions and experimental data for all feasible surrogate
mixtures is measured using the error function Fmix, defined as

F mix = 1
2

(
F mix

ig + F mix
SL

)
, (7)

where F mix
ig and F mix

SL are calculated as the sum of the model prediction errors over all ex-
perimental conditions for the ignition cases and the laminar flame speed cases, respectively.
To account for the uncertainty in the experimental measurements, a Gaussian function is
adopted to evaluate individual errors, as illustrated in Figure 3. As a first choice, the error
function labelled “A” in Figure 3 is used unless stated otherwise.

Accordingly, for a given surrogate mixture (denoted by “mix”), the error in ignition
delay prediction is evaluated as:

F mix
ig = 1

Nig

Nig∑

i=1

{

1 − exp

(
−(τmix

sim,i − τexp,i)2

2σ 2
i

)}2

(8)
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Figure 4. Error function Fmix evaluated throughout the surrogate composition space, highlighting
So (blue circle) and the newly defined simulation-based composition Ss (red diamond). The region
over which Fmix is less than 5% above its minimum value is highlighted with green symbols.

where Nig is the number of ignition delay data points considered in the experimental
dataset, and τ denotes the ignition delays with subscripts specifying experiments (exp)
or simulations (sim). A constant standard deviation σ = ±25% of the mean value is
used, which corresponds to the reported uncertainty in the experimental data of Wang and
Oehlschlaeger [30]. Similarly for the laminar flame speeds, F mix

SL is given by:

F mix
SL = 1

NSL

NSL∑

i=1

{

1 − exp

(
−(SLmix

sim,i − SLexp,i)2

2σ 2
i

)}2

(9)

where NSL is the number of flame speed measurements, and SL denotes the laminar
flame speed with subscripts specifying experiments (exp) or simulations (sim). A constant
standard deviation σ = ±2 cm s−1 is used, which corresponds to the uncertainty reported
in the experimental flame speed measurements of Hui et al. [31].

Note that the configuration-specific error functions F mix
ig and F mix

SL , along with the
combined one, Fmix, all yield values bounded between 0 and 1. Despite being normalised
by the number of data points of each type, we acknowledge that the datasets for flame speeds
are at atmospheric pressure, whereas ignition delays are at different pressures. A impartial
weighting procedure that accounts for this difference in conditions will be examined in the
future, while the focus here remains on elucidating the overall idea.

3.3. Performance map and optimal composition

The error function Fmix is computed over the entire surrogate composition space, as de-
scribed above. The results are shown in Figure 4, with darker colors being associated with
larger errors. Among all compositions tested, the one yielding the least error (∼26%, red
diamond) is made of 43.75% n-dodecane, 34.375% methyl-cyclohexane, and 21.875%
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m-xylene by mole%. This composition as will henceforth be referred to as the simulation-
based surrogate, or Ss , to distinguish it from the composition So introduced earlier.

3.4. Remarks and discussion

Several interesting remarks can be made from Figure 4.

A. The mixtures on the left half of the triangle contain significant amounts of m-xylene
at the expense of n-dodecane and methyl-cyclohexane. Those mixtures show large
errors (>40%) compared to experimental data, and are therefore not suitable as
surrogates for jet fuels.

This is expected from figure 6 in [18], which shows that the ignition delays of m-xylene
are much longer compared to those of actual jet fuel at high temperatures. Also, m-xylene
cannot describe the ignition behaviour at moderate and low temperatures exhibited by jet
fuels.

B. About 10% of all mixtures tested have relative errors of less than 5% (green
symbols) from the optimal surrogate Se, and this set includes So (blue circle).

To illustrate this, a comparison of ignition delays and flame speeds of Se and So in
Figure 5 shows the extent of similarity in predictions between these mixtures. The laminar
flame speed predictions of these two mixtures are indistinguishable. For the ignition delay
configurations, surrogate Ss represents data at P = 20 atm better than So at T < 900 K, while
compromising on the few data points at those temperatures at P = 11 atm. The significant
improvement with surrogate Ss appears at low temperatures (T < 750 K) at P = 20 atm and
this will be discussed subsequently. No conclusive remark can be made about predictions at
P = 39 atm, since both surrogates show shorter ignition delays compared to experimental
data at these conditions. Thus, while it is not possible to obtain a perfect agreement between
model prediction and experimental measurements, both the surrogates can be regarded as
similarly appropriate to represent the ignition delay data (at stoichiometric conditions,
especially at T > 750 K) as well as flame speed data. Smaller uncertainties in the reference
data (especially ignition delays) would reduce the size of the low-error region, likely
increasing the differences between optimal and non-optimal mixtures.

C. The low-error region, highlighted in green, has a significant overlap with the region
satisfying the H/C ratio constraint (shown in Figure 2), but limited overlap with the
region satisfying the cetane number constraint. In fact, in the low error region, the
cetane numbers can vary from 46 to 62. Note that the optimal surrogate composition
Ss has a H/C ratio of 1.95, well within the expected range, but a cetane number of
56.15, therefore outside the range specified in Equation (4).

The optimal surrogates for different reference experimental datasets are shown in
Figure 6.

It can be seen that the optimal surrogate which best reproduces ignition delays of jet
fuel (Figure 6(a)) belongs to a different region of the triangular composition space than
the one that best reproduces the flame speeds (Figure 6(b)). Thus, the surrogate that best
represents both these datasets, i.e. Ss (Figure 4), is a compromise between the two. The
flame speed data used to calibrate the surrogate composition in effect tend to constrain the
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Figure 5. (a) Computed laminar flame speeds at P = 1 atm and (b)–(e) ignition delays at stoichio-
metric conditions for (i) So proposed in [18] based on the constrained optimisation approach (solid
lines) and (ii) Ss identified in Section 3.3 based on model predictions (dashed lines); experimental
data (symbols) [30,31].

H/C ratio of the optimal surrogate to fall within the prescribed range for jet fuels (1.91 ±
0.05 [20,21]). This observation emphasises the need to correctly weigh the errors coming
from different datasets or combustion configurations.

More interestingly, note that the ignition delays simulated with surrogate So pre-
dicts longer low temperature ignition delays compared to experiments (see solid lines in
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Figure 6. Error in predictions compared to experiments calculated as root mean square of 1
−Gaussian deviation, with reference data as (a) ignition delays only, (b) laminar flame speeds only,
(c) both ignition delays and laminar flame speeds (same as Figure 4). Surrogate So is shown by a
blue sphere. The best mixtures in cases (a), (b) and (c) are all indicated by red diamonds.

Figure 5(d) at T < 750 K). This difference, despite the cetane number of surrogate So

(equal to 46.6) falling within the typical range for jet fuel (42–47 [24,25]), may suggest
a need to improve the kinetic mechanism proposed in [18] for low temperature ignition.
It is therefore expected that when using this reaction mechanism to describe the kinetics,
a surrogate designed to match the jet fuel cetane number (as done for So) overpredicts
ignition delays at low temperatures, because of the inaccuracies in the reaction mechanism
at those conditions. The simulation-based Ss automatically corrects for this behaviour,
by choosing a mixture with a H/C ratio (H/C = 1.95) corresponding to that of the real
fuel, thereby capturing SL and high temperature ignition, but with a higher cetane number
(56.15) than typical jet fuels (42–47 [24,25]). This allows for a better prediction at lower
temperatures (Figure 5(d)). This suggests that in a computational modelling context, sur-
rogate compositions should be determined not just based on global characteristics, as has
been done so far, but also on the characteristics and predictive capabilities of the chemical
kinetic mechanisms used for the simulation.

This is illustrated further in the Supplementary materials by considering jet fuel sur-
rogates made of n-dodecane, toluene and methylcyclohexane. Different optimal surrogate
compositions are identified based on the presented approach using the kinetic mechanism
described above [18] and jetSurF [35], depending on the predictive capabilities of the
respective kinetic model.

D. Ss is found to lie outside of the range of TSIs specified for jet fuel.

With no experimental data representative of the sooting tendency, there is actually no
reason why the TSI constraint would be satisfied. This point is illustrated in Figure 7,
where the surrogates So and Ss are shown to predict significantly different amounts of
polycyclic aromatic hydrocarbons in rich propagating flames. Therefore, it can be expected
that the picture as shown in Figure 4 may change dramatically as additional experimental
data, which characterise sooting or other combustion aspects, are included as reference



Combustion Theory and Modelling 11

 0

 1

 2

 3

 4

0.
7

0.
8

0.
9

1.
0

1.
1

1.
2

1.
3

1.
4

M
as

sf
ra

ct
io

n 
(p

pm
)

φ

So
Ss

Figure 7. Maximum amount of polycyclic aromatic hydrocarbons (one ring to four rings) present
in premixed flames, as predicted with surrogates So and Ss as initial fuels.

data. This, again, emphasises the importance of designing a surrogate specifically for the
numerical simulations of interest.

E. The results indicate a weak sensitivity to the error measure employed.

To investigate the sensitivity of the optimal surrogate to the error measure used, we
consider another error measure, labelled “B” in Figure 3, in place of the one used above
to define the error function F mix

ig (Equation (8)) and F mix
SL (Equation (9)). Accordingly,

all predictions that fall within the uncertainty limits of the reference experimental data
are assigned a zero error, taking these as perfect in comparison to the mean value of data.
Outside the uncertainty limits, the error between the computed results and the reference data
grows as Gaussian deviations, approaching unity (or 100% error) for very large deviations.
The rest of the procedure is unchanged. The resulting optimal mixture is 46.875%, 31.25%,
and 21.875% for n-dodecane, methyl-cyclohexane, and m-xylene, respectively, This error
of roughly 3% for the first two components corresponds to the grid spacing chosen to
construct the performance map (33 points per edge): the optimal surrogate therefore moved
one grid point away from Ss . While this suggests a weak sensitivity for the optimal surrogate
identified by the approach with respect to the error measure employed, this aspect must be
revisited when more accurate reference data (especially ignition delays) become available.

The above discussion suggests that the approach to define surrogates based on actual
experimental data of combustion characteristics is promising. Note that the manner in
which the experiments are modelled may have inaccuracies (due to facility effects). In the
presented approach, the uncertainties in the experimental data need to be carefully assigned
to account for these differences and this aspect warrants further investigation.

4. Nonlinear optimisation procedure

The optimal simulation-based surrogate Ss was identified above from the performance
maps directly. While this brute force approach revealed a lot of information about the
proposed surrogate formulation strategy, highlighting its strengths and scope for improve-
ment, it is unnecessarily expensive, especially if the experimental dataset is large, or if
more than three components are considered for the surrogate. Instead, only a few carefully
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chosen mixtures need to be evaluated to find the error function minimum if an optimisation
approach is followed, increasing greatly the practicality of the procedure. The details of
this automatic nonlinear optimisation approach are given below.

The nonlinear optimisation library NLopt, an open-source library for nonlinear opti-
misation available from Massachusetts Institute of Technology [36], is used in the present
framework, and the FlameMaster code [37] is used to evaluate ignition delay times and
laminar burning velocities. The variables to optimise are naturally chosen as the mole frac-
tions of two out of three (or in general, of the number of components minus one) of the
surrogate components, the last component amount being deduced from the mole fractions
normalisation condition. As mentioned above, the most expensive part of the optimisation
algorithm is the repeated evaluations of the error function Fmix for large chemical kinetic
mechanisms and large experimental datasets. To accelerate the process significantly, we
therefore adopt the sensitivity analysis-based method proposed by Davis et al. [38], in
which response surfaces are constructed in the vicinity of the point under consideration in
the optimisation algorithm. As expected, with a small enough convergence criterion for the
optimisation algorithm, the resulting surrogate composition is located less than one grid
point away from Ss , containing 42.8% n-dodecane, 36.5% methylcyclohexane, and 20.6%
m-xylene by mole%.

Note that the correlation rule, Equation (5), is used here as well to determine the laminar
flame speeds of mixtures in order to compare the surrogates in the two approaches in a fair
manner. Since the optimisation approach involves far fewer computations compared to the
brute force method, laminar flame speeds could now be computed easily for the desired
mixtures and the response surface can be created for SL based on these calculations.

A Fortran version of the code used to perform this optimisation can be obtained
from the authors upon request. This code can handle any chemical kinetic mechanisms,
and can easily be extended to account for more than three surrogate components, dif-
ferent error functions, and other simulation configurations and combustion targets of
interest.

5. Conclusions

In this article, an alternate approach to define surrogates for gas-phase combustion appli-
cations based on model predictions of an experimental dataset has been analysed, and its
strengths have been highlighted using a previously well-characterised jet fuel surrogate. In
contrast to the global combustion characteristics (such as hydrogen-to-carbon ratio, cetane
number, etc.) used as targets in existing surrogate definition approaches, the proposed
method places the focus on (i) the predictions of combustion dynamics such as ignition
delay times or laminar flame speeds and their agreement with experimental data, and (ii)
the characteristics of the kinetic mechanism used to obtain those predictions.

This is a very important distinction: while a surrogate may a priori satisfies all spec-
ifications for the fuel of interest, if the corresponding chemical mechanism is not able
to capture the fundamental combustion quantities at the core of the turbulent combustion
models used in the simulations, one cannot expect to obtain reasonable predictions in those
simulations either. Thus, in a computational modelling context, surrogate compositions
should be determined not just based on global characteristics, as has been done so far, but
also on the characteristics and predictive capabilities of the chemical kinetic mechanisms
used for the simulation.

The nonlinear optimisation code to formulate surrogate compositions based on model
prediction is available from the authors. This flexible code can be extended to handle
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any surrogate mixture of interest, and can become, in the authors’ opinion, a valuable
contribution to the combustion community.
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