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a b s t r a c t

Large Eddy Simulation/particle Probability Density Function (LES/PDF) approaches are now well devel-
oped, and can be applied to turbulent combustion problems involving complex flows with strong turbu-
lence–chemistry interactions. However, these methods are computationally expensive, restricting their
use to simple fuels with relatively small detailed chemical mechanisms. To mitigate the cost in both
CPU time and storage requirements, an adaptive strategy tailored for particle PDF methods is presented
here, which provides for each particle a specialized reduced representation and kinetic model adjusted to
its changing composition. Rather than performing chemical reduction at runtime to determine the opti-
mal set of equations to use for a given particle, an analysis of the composition space likely to be accessed
during the combustion simulation is performed in a pre-processing stage using simple Partially Stirred
Reactor (PaSR) computations. In the pre-processing stage, the composition space is partitioned into a
user-specified number of regions, over which suitable reduced chemical representations and kinetic
models are generated automatically using the Directed Relation Graph with Error Propagation (DRGEP)
reduction technique. A computational particle in the combustion simulation then carries only the vari-
ables present in the reduced representation and evolves according to the reduced kinetic model corre-
sponding to the composition space region the particle belongs to. This region is identified efficiently
using a low-dimensional binary-tree search algorithm, thereby keeping the run-time overhead associated
with the adaptive strategy to a minimum. The performance of the algorithm is characterized for propa-
ne/air combustion in a PaSR with pairwise mixing. The results show that the reduction errors are well
controlled by the specified error tolerance, and that the adaptive framework provides significant gains
in cost and storage compared to traditional non-adaptive reduction approaches.

! 2015 The Combustion Institute. Published by Elsevier Inc. All rights reserved.

1. Introduction

The understanding of chemical kinetics for hydrocarbon fuel
combustion has exploded over the past two decades, leading to
the development of ever growing detailed kinetic schemes for a
wide range of molecular species relevant to hydrocarbon combus-
tion [1]. With more accurate rate rules and improved mechanistic
considerations, some of the latest published mechanisms are
approaching 104 species and typically five times as many reactions
[2]. However, these advances in chemical kinetics and detailed
model development have to be integrated with Computational
Fluid Dynamics (CFD) tools to fully realize their potential in terms
of improved understanding and optimization of practical combus-
tion devices. The real challenge then is to maximize the level of
chemical detail that can be afforded in CFD. Different modeling

approaches for turbulent flows impose different upper limits on
the number of variables that can be used to describe the chemistry,
ranging from around twenty in Direct Numerical Simulations [3],
to a few dozens for LES/particle PDF methods [4], to a few hun-
dreds for flamelet-based approaches [5,6].

Numerous techniques have been developed to drastically
reduce the computation burden associated with a detailed descrip-
tion of the chemistry. A non-exhaustive list includes: (i) automatic
elimination of negligible species and reactions to generate skeletal
mechanisms [7–13]; (ii) dimension reduction techniques, which
further decrease the number of species or degrees of freedom that
need be considered, including chemical lumping [14,15], mathe-
matical lumping [16], QSSA [17,18], RCCE [19], ILDM [20], REDIM
[21] and ICE-PIC [22]; and (iii) storage/retrieval algorithms to
reduce the computational cost of repetitive kinetics calculations,
including ISAT [23,24] and PRISM [25]. (One component of the cur-
rent methodology is DRGEP [9], which is in category (i).) Rather
than being in competition, these general approaches can be used
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in combination with a compounding of the benefits. Yet, reaching
the level of reduction necessary to handle complex molecules or
multi-component mixtures still appears as a major challenge.

One way forward is to observe that, for a given reactive flow
configuration, thermodynamic conditions can vary widely in space
and time, and in any small range of temperature and compositions,
many species have negligible concentrations, and only a few are
chemically active. Hence, the chemistry description in that

composition space region may require many fewer species and
reactions than a more detailed model applicable over the entire
composition space. This observation leads to the concept of adap-
tive chemistry, in which the chemical representation and kinetic
equations are adapted to the local chemical activity and thermody-
namic state.

Several attempts to devise computationally-viable adaptive
chemistry strategies have been made recently [26–39]. In most

Nomenclature

C classifying space, of dimension nC
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spaces
C classification vector in C, of dimension nC
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cD kinetic inhomogeneity cost of the set D
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NR number of regions in the partition of the classifying

space
nr number of reactions in the detailed mechanism
nJ

r number of reactions in the reduced kinetic model MJ
ns number of species in the detailed chemical mechanism
nJ

s number of species in the reduced kinetic model MJ
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rAB DRGEP direct interaction coefficient between species A
and B
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RD DRGEP coefficient vector for all compositions in the da-
tabase D

eRD scaled DRGEP coefficient vector for all compositions in
the database D
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RF!J reduction operator
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SJ chemical source term for the reduced kinetic model MJ
T set of targets used in DRGEP
T temperature (K)
t time (s)
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Y full species mass fraction vector, of dimension ns

yJ mass fraction vector in the representation /J , of dimen-
sion nJ

s
ŷ mass fractions of locally-significant species
aT;U DRGEP scaling coefficient for target T and composition

U
Dt simulation time step (s)
e reaction-mapping error for a reduced kinetic model
ec specified error tolerance
eA

SA sensitivity coefficient of species A in Reduced Modeling
esig threshold for the mass fraction of an inactive species to

be regionally or locally significant
eU reaction mapping error for composition U
eX incurred error in X in a PaSR simulation
êX conservation error in X in a PaSR simulation
hJ set of species in the reduced kinetic model MJ
H set of species in the detailed mechanism
ĥ set of locally-significant species
mi;A stoichiometric coefficient of species A in reaction i
nJ set of reactions in the reduced kinetic model MJ
smix particle mixing time scale in the PaSR (s)
spair particle pairing time scale in the PaSR (s)
sres residence time in the PaSR (s)
! list of models available for a region, parameterized by

the model error e
U temperature-based representation of a composition in F

space
UD temperature-based representation of a composition in F

space obtained using MD
/J reduced representation based on the reduced kinetic

model MJ
Um temperature-based representation of a composition in F

space after the mixing fractional step
U0 enthalpy-based representation of a composition in F

space
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k composition of kth inflowing stream in the PaSR
N set of reactions in the detailed mechanism
xi reaction rate of reaction i
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cases, on-the-fly reduction is used, in which at each time step of
the simulation, the local composition is analyzed to determine
the smallest set of important species to solve for, with the other
unimportant species kept as ‘‘inert’’. This methodology theoreti-
cally guarantees a maximal reduction in the time needed to inte-
grate the chemistry equations, but is efficient only if the time
taken by the reduction algorithm is comparatively small. Species
elimination or dimension-reduction methods based on graph or
element flux analysis methods have been shown to satisfy this
requirements [27,29,34–38,40]. In particular, the Dynamic
Adaptive Chemistry, or DAC, technique [27] has been applied on
a variety of configurations, including methane/air combustion in
partially-stirred reactor [34], 1D premixed, unsteady,
freely-propagating methane/air flame [35], homogeneous ignition
[37], and compression-ignition engine simulations [36]. Other
on-the-fly reduction approaches considered HCCI engine simula-
tions [39], and even large scale simulations of a turbulent
non-premixed ethylene flame [30].

An alternative to on-the-fly reduction is to incorporate some
amount of preprocessing calculations to reduce the overhead of
the adaptive strategy at runtime. An early demonstration was
made by Schwer et al. [26], who manually assembled a small
library of reduced models addressing key chemistry regimes
expected to be encountered in a flame. Criteria involving local spe-
cies mass fractions were used to decide which model to use in each
domain cell in the simulation of a turbulent hydrogen shear layer
flame and an axisymmetric laminar partially premixed methane–
air flames. Singer and Green [32] propose a snapshot method to
tabulate a priori proper orthogonal decomposition projection
matrices, which are then used adaptively at run time to project
minor species mass fractions onto a reduced dimensional space,
thereby accelerating flame calculations.

While major progress in the adaptive chemistry field has been
made in reducing the cost associated with the chemistry calcula-
tions, most of the strategies listed above rely on the knowledge
of the full composition vector at every given time and location.
This avoids the conceptual problems of mechanism augmentation
(i.e. re-introducing species) and transport-term evaluation. While
storage is not an issue for relatively small kinetic schemes, this
approach quickly becomes prohibitively expensive as the number
of chemical variables is increased. Tosatto et al. [29] propose a
solution to this problem by enabling species removal and
re-introduction through a graph analysis modified to account for
transport processes. While the integration of the resulting algo-
rithm with flame simulation codes is not straightforward, very
good performances are demonstrated in 2D axisymmetric
co-flow flame calculations.

In this paper, we present and demonstrate a pre-partitioned
adaptive chemistry strategy to handle large chemical mechanisms
and tailored for particle Probability Density Function (PDF) meth-
ods. These methods are now well developed, and can be applied
to turbulent combustion problems involving complex flows with
strong turbulence–chemistry interactions [41,42]. In the particle
PDF framework, the gas composition within the solution domain
is represented by a large number (up to several millions) of
notional particles, each carrying one realization of the fluid ther-
mochemical state. One of the virtues of PDF methods is that reac-
tion is in closed form, allowing for realistic chemistry to be
incorporated. But that comes at a significant increase in CPU time
compared to other approaches and models (e.g., a factor of 3 or
more [43]). As such, because the chemistry in PDF methods is
described by a detailed (or reduced) mechanism and is treated in
isolation in a fractional step, adaptive strategies appropriate for
PDF methods to simulate turbulent combustion involve somewhat
different issues than the Eulerian framework typically considered
in the literature mentioned above, in which the energy and species

transport equations, discretized and solved on a grid, require clo-
sures for the reaction term that combine both chemical kinetics
and turbulence/chemistry interaction assumptions.

Previous work on this problem includes that of Banerjee and
Ierapetritou [33], who use elaborate clustering techniques to create
a library of reduced kinetic models, and explicitly determine the
highly non-convex regions in composition space over which those
models are valid. They also detail how such a model library could
be used in an adaptive simulation framework, providing
proof-of-concept using the simpler Partially Stirred Reactor
(PaSR) configuration. The present work also considers the PaSR as
its development and validation framework due to its direct rele-
vance to PDF simulations of turbulent combustion. However we
adopt a much simpler conceptual approach, in which the composi-
tion space is partitioned into judiciously chosen regions prior to the
derivation of reduced kinetic models. Computational particles are
also constrained to carry only the minimum number of variables
needed to represent their thermochemical state accurately, so that
both CPU time and memory requirements associated with particle
PDF methods are significantly reduced.

The two primary defining characteristics of the methodology
are that the composition space is partitioned in a pre-processing
step, and that DRGEP is used to generate the reduced kinetic mod-
els. The methodology can therefore be called Pre-Partitioned
Adaptive Chemistry using Direction Relation Graphs with Error
Propagation, or PPAC-DRGEP.

The remainder of this paper is organized as follows. In Section 2,
we provide a mathematical description of how chemistry is repre-
sented in particles PDF computations, using a Partially Stirred
Reactor configuration as the framework. In Section 3, an overview
of the adaptive chemistry methodology is provided, followed by a
more detailed description of the reduction technique employed
(Section 4) and of each component of the algorithm (Section 5).
The method is then applied to a propane/air non-premixed PaSR,
described in Section 6, and its performance is analyzed in
Section 7. Possible improvements and extensions to the methodol-
ogy, and its application in LES/PDF simulations, are discussed in
Section 8. A summary and conclusions are provided in Section 9.

2. Particle representation in a partially-stirred reactor (PaSR)

We consider a reacting mixture of ideal gases, consisting of ns

chemical species composed of ne elements. For simplicity of expo-
sition, the mixture is assumed to evolve at a fixed pressure p, so
that (given p) the full thermochemical state, or composition, of
the mixture is completely characterized by the ns-vector of species
mass fractions Y and the mixture temperature T. Accordingly, we
define the composition to be the ðns þ 1Þ-vector: U $ fY; Tg. We
denote by F the full composition space, so that any composition
vector U is an element of F.

In some situations it is convenient to consider the enthalpy h as
the energy variable, in place of T. We therefore define the alterna-
tive composition vector U0 $ fY;hg. These two representation of
the composition contain the same information, and it is straight-
forward to transform from one to the other.

As mentioned above, a partially-stirred reactor (PaSR) is used as
a reference configuration to develop, test, and validate the adaptive
methodology. The reactor consists of a constant, even number np of
particles, the nth particle having composition UðnÞ. Each particle is
assigned a partner, and the particles are ordered so that particles n
and nþ 1 are partners, for odd n. The PaSR is continuously fed by a
specified number nstr of inflow streams, the kth stream having pre-
scribed composition Ustr

k , and normalized mass flow rate _mstr
k . Also

specified are the residence time, sres, a mixing time, smix, and a
pairing time, spair. The particular PaSR test case considered is
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described in Section 6, where the values of these quantities are
given in Table 1.

The compositions of the particles evolve in time in small time
steps, Dt, in three fractional steps accounting for: inflow/outflow/-
pairing; mixing; and reaction. In the inflow/outflow/pairing frac-
tional step, an even number, nin, of particles are selected at
random with equal probability and their compositions are replaced
by inflow stream compositions. In expectation, that is, when con-
sidering its long-run average value, nin is equal to npDt=sres, and
the number from each inflow stream is proportional to its specified
mass flow rate. A number, npair, pairs of particles are then selected
for pairing. In expectation, npair is equal to 1

2 npDt=sres. These pairs
include those involved in inflow/outflow and others selected at
random with uniform probability. These particles are then ran-
domly shuffled to reassign partners.

We denote by U0ðnÞðtÞ and U0ðnÞ;m the enthalpy-based composi-
tion of the nth particle before and after the mixing fractional step.
Then, mixing amounts to a small exchange of composition between
partners:

U0ðnÞ;m ¼ U0ðnÞðtÞ & Dt
smix

U0ðnÞðtÞ &U0ðnþ1ÞðtÞ
! "

;

U0ðnþ1Þ;m ¼ U0ðnþ1ÞðtÞ & Dt
smix

U0ðnþ1ÞðtÞ &U0ðnÞðtÞ
! "

; ð1Þ

for all odd n.
At the start of the reaction fractional step, the compositions

after mixing, U0ðnÞ;m, are converted to their temperature representa-
tions UðnÞ;m. Starting from these initial conditions, the compositions
then evolve due to reaction under isobaric, adiabatic conditions
over a time Dt according to

dUðnÞðtÞ
dt

¼ SðUðnÞðtÞÞ; ð2Þ

where S is the chemical source term defined by the user-provided
detailed chemical mechanism. This mechanism, denoted by MD,

involves the set of ns species H, and a set of nr reactions N. The reac-
tion fractional step yields the final particle composition at t þ Dt,
i.e., UðnÞðt þ DtÞ; and the mapping that Eq. (2) provides from U0ðnÞ;m

to UðnÞðt þ DtÞ is referred to as the reaction mapping.
Figure 1 shows the evolution of the temperature of a typical

particle in the PaSR. Inflow/outflow events result in a discontinuity
of the temperature; pairing results in a discontinuity in dT=dt; and
in between these discrete events, mixing and reaction result in a
smooth evolution.

3. Overview of the pre-conditioned adaptive chemistry
methodology

The overall pre-conditioned adaptive chemistry methodology
combines an off-line, pre-processing stage (during which the com-
position space is partitioned and a set reduced kinetic models is
created), and an online, dynamic procedure to identify, at time t,
which reduced model to use for each particle in the combustion
simulation. We refer to these two stages as the pre-processing stage
and the adaptive simulation.

3.1. Pre-processing stage

The pre-processing stage consists of the following three tasks:

1. Database creation: Using the PaSR and the detailed chemical
mechanism, generate a database D consisting of a large number
nD of full compositions, representative of the compositions that
occur during the simulation of interest.

2. Partitioning: Define a low-dimensional space C, referred to
hereafter as the classifying space, and a function mapping the
composition space F to the classifying space C; C : F! C.
Partition C into a specified number NR of regions, the Jth region
being denoted by RJ . This also implicitly partitions the composi-
tion space F: corresponding to RJ , the Jth region in F is all points
mapped by C to RJ . Henceforth we use RJ to denote the Jth region
in either C or F, depending on the context.

3. Reduced modeling: For each region RJ , identify a reduced compo-
sition space FJ (a sub-space of F), a reduced representation of
the composition, /J $ yJ; T

# $
2 FJ , and an appropriate reduced

kinetic model MJ . The reduced representation and kinetic model
involve a reduced set of nJ

s retained species hJ and a reduced set
of nJ

r retained reactions nJ , with the expectation that nJ
s and nJ

r

are significantly smaller that ns and nr , respectively. The nJ
s-vec-

tor of the mass fraction of the retained species is denoted by yJ .
This procedure is called reduced modeling mapping for RJ:

Table 1
Specification of the parameters for the non-premixed propane/air piloted PaSR test
case. Species are given as mass fractions. The initial conditions are the same as Stream
1.

Parameters Name Values

Reactor characteristics
Pressure p 1 bar
Number of particles np 100
Pairing time spair 1 ms
Mixing time smix 1 ms
Residence time sres 10 ms
Time step Dt 0.1 ms

Parameters Stream 1 Stream 2 Stream 3

Initial and Inflow conditions (Species data are mass fractions)
Normalized mass flow rates 0.05 0.893 0.057
Temperature 2272 K 300 K 300 K
C3H8 0.0 0.0 1.0
N2 7:2085' 10&1 0.767 0.0
O2 7:6607' 10&3 0.233 0.0
CO2 1:6146' 10&1 0.0 0.0
H2O 9:5159' 10&2 0.0 0.0
CO 1:2162' 10&2 0.0 0.0
OH 2:2616' 10&3 0.0 0.0
H2 2:2880' 10&4 0.0 0.0
O 1:9634' 10&4 0.0 0.0
H 1:6928' 10&5 0.0 0.0
HO2 8:0954' 10&7 0.0 0.0
H2O2 6:1000' 10&8 0.0 0.0
HCO 1:2371' 10&9 0.0 0.0
CH2O 1:6891' 10&11 0.0 0.0

0 0.005 0.01 0.015 0.02 0.025 0.03
0

500

1000

1500

2000

2500

t[s]

T
[K

]

Pairing

Outflow/Inflow

Fig. 1. Typical temperature evolution for an individual particle in a PaSR.
Discontinuities in T correspond to inflow/outflow events, while discontinuities in
dT=dt are associated with pairing events. Apart from those discrete, random events,
the temperature evolves continuously due to mixing and reaction. (Only some of
the pairing events are indicated.)
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MJ $ /J ; hJ; nJ

# $
: ð3Þ

3.2. Reduced representation of compositions

In the adaptive simulation, the reduced composition of the nth
particle is denoted by /ðnÞ and is defined as

/ðnÞ ¼ fJðnÞ; yðnÞJ ; bhðnÞ; byðnÞ; TðnÞg; ð4Þ

where J indicates that the representation is based on model MJ , and
T is the temperature. The way the species are represented in Eq. (4)
is schematically presented in Fig. 2, and further explanation is pro-
vided below.

As described in Section 5.3, the DRGEP procedure used to gen-
erate the model MJ identifies which species are kinetically active,
and the rest are deemed to be inactive. Of the inactive species,
some may be deemed to be regionally significant, that is, significant
for a given region RJ in composition space, if their mass fraction has
a significant probability to be above a specified threshold esig

(taken to be esig ¼ 10&3) among compositions in the region. This
is further explained and made precise in Section 5.3. Both active
and regionally-significant species are included in MJ , and their
mass fractions are denoted by yJ .

An inactive species that is not regionally significant is deemed
to be locally significant, that is, significant for a specific composi-
tion, if its mass fraction in this composition exceeds esig. In the
reduced representation, Eq. (4), ĥ denotes the set of
locally-significant species, and by denotes their mass fractions. It
is found to be advantageous in terms of accuracy and efficiency
to retain these locally-significant species in the particle composi-
tion, but not in the model MJ: neglecting these species leads to
inaccuracy, while including them in the model leads to unduly
large models and hence inefficiency. It is expected (and found in
practice) that locally-significant species are seldom needed. It
should be noted that to satisfy the normalization condition for
mass fractions, the components of yJ and by together sum to unity.

Henceforth, we abbreviate the notation (Eq. (4)) for the reduced
representation of composition to:

/
ðnÞ
J ¼ fy

ðnÞ
J ; byðnÞ; T ðnÞg; ð5Þ

it being implied that JðnÞ and ĥðnÞ are also known. We refer to this as
the reduced composition based on model MJ , and note that it does
not necessarily require that the composition belongs to region RJ .

3.3. Adaptive simulation

Once the classifying space partition and a corresponding set of
reduced kinetic models MJ¼1;...;NR have been constructed, the time
evolution of a particle composition in the PaSR can be computed
using reduced representations and kinetic models dynamically
chosen among this set. This adaptive algorithm, illustrated in
Fig. 3 for NR ¼ 4, proceeds in the following sub-steps:

1. At the beginning of each time step, the composition of particle n
is expressed using the reduced representation based on model
MJ (for some known J): /

ðnÞ
J ðtÞ ¼ fy

ðnÞ
J ðtÞ; byðnÞðtÞ; T

ðnÞðtÞg.
2. In the mixing fractional step involving two paired particles n

and nþ 1 with reduced compositions /
ðnÞ
J and /

ðnþ1Þ
K pertaining

to models MJ and MK , respectively, the full representations UðnÞ

and Uðnþ1Þ are first reconstructed. These reconstructed composi-
tions are then mixed according to Eq. (1) to yield the full com-
positions after mixing, denoted by UðnÞ;m and Uðnþ1Þ;m.

3. The classification algorithm is used to identify which regions RJ0

and RK 0 that UðnÞ;m and Uðnþ1Þ;m belong to.
4. The full compositions UðnÞ;m and Uðnþ1Þ;m are then reduced to the

reduced representations /
ðnÞ;m
J0 and /

ðnþ1Þ;m
K 0 , based on models MJ0

and MK 0 .
5. Finally, in the reaction fractional step, the reduced representa-

tion of particle n located in region RJ;/
ðnÞ
J , is integrated over

the time increment Dt according to the reduced kinetic model
MJ . These values of J and /

ðnÞ
J are then used in sub-step 1 of

the next time step. How the locally-significant species are trea-
ted in the reaction fractional step is described in Section 5.3.

Fig. 2. Species nomenclature used in the reduced representation of compositions.
Note that nJ , the set of retained reactions for region J, involves active species
exclusively, with the exception of third-body expressions that may include
regionally and locally significant species.

Fig. 3. Overview of the adaptive strategy. The classifying space C is partitioned into
NR ¼ 4 regions, R1 to R4, for which there are corresponding reduced kinetic models
M1 to M4. At the beginning of the time step, particle n, represented by the black
circle, has the reduced representation based on model M1. In the mixing fractional
step, the reduced representation /

ðnÞ
J¼1 is first reconstructed to a full representation

UðnÞ (1), and mixed using the pairwise mixing model of Eq. (1) (2). Because of the
mixing process, the full representation after mixing, UðnÞ;m , has moved to region R4,
as determined by classification (3). UðnÞ;m is reduced to /

ðnÞ;m
J¼4 (4), then integrated in

time according to the reduced model M4 (5) to yield the particle composition at the
end of the time step: /

ðnÞ
J¼4ðt þ DtÞ. (Note that the final composition, although based

on model M4 is not necessarily in region R4.)
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3.4. Required operations

The adaptive procedure outlined above requires the definition
of the following generic operations, applicable to any particle with
reduced composition /J . Detailed descriptions and implementa-
tions are provided in Section 5.

1. Reconstruction: The full (F) representation U 2 F, reconstructed
from the reduced representation /J , is provided by:

U ¼ RJ!F /J

! "
: ð6Þ

2. Classification: Given a full representation U of an individual par-
ticle composition, the classification function J that returns the
index of the region it belongs to is defined as:

J ¼ J Uð Þ: ð7Þ

3. Reduction: The full representation U of a given particle compo-
sition can be converted to the reduced representation based on
model MJ by the reduction operation:

/J ¼ RF!JðUÞ: ð8Þ

Note that information is lost in the reduction, so a subsequent
reconstruction does not (in general) recover the original composi-
tion, i.e., U –RJ!F RF!JðUÞ

! "
. This loss of information in the reduc-

tion process leads to an error in the adaptive simulation, which is
referred to as conversion error. On the other hand, reconstruction is
done consistently to satisfy /J ¼ RF!J RJ!Fð/JÞ

! "
.

In the following sections, we first provide (in Section 4) an over-
view of the Directed Relation Graph with Error Propagation
method, which lies at the core of this adaptive chemistry method-
ology. We then describe in detail (in Section 5) the algorithms
required at each stage, namely our approach to:

( In the pre-processing stage: generating a database D of repre-
sentative compositions; identifying a suitable classifying space
C; subsequently partitioning C into NR regions (Partitioning);
and, developing accurate reduced kinetic models for each of
these regions (Reduced Modeling);
( In the adaptive simulation stage: Reconstructing the full repre-

sentation of a given particle from its reduced representation
(Reconstruction), determining the region a particle belongs to
based on its current representation (Classification), and finally
converting a particle composition from a full reconstructed rep-
resentation to its appropriate reduced representation
(Reduction).

The reader less interested in the details of the implementation
may want to skip to Section 6.

4. Directed Relation Graph with Error Propagation (DRGEP)

By analyzing production rates derived from an ensemble of
composition states, the Directed Relation Graph with Error
Propagation (DRGEP) method [9] quantifies the coupling between
the species and reactions included in a chemical mechanism and
some user-specified targets. The main output from this analysis
is a set of importance coefficients, which are referred to as
DRGEP coefficients, allowing us to rank species and reactions from
most important to least important for the prediction of the chosen
targets. DRGEP coefficients are used at two different levels in the
pre-processing stage: (i) in the Partitioning stage, to identify
regions in composition space that share common chemical charac-
teristics; and (ii) in the Reduced Modeling stage, to derive
region-specific reduced kinetic models. The main ingredients of
the DRGEP method are recalled below, the first one being the

determination of a set of nT targets T , most often particular species
or heat release, on which we want to quantify the influence of indi-
vidual species and reactions.

4.1. Direct interaction coefficients

Direct interaction coefficients are defined as the measure of the
coupling between two species that are directly related through an
elementary reaction, that is, two species that appear concurrently
in the same reaction. For a given composition U and kinetic model
M, the coupling coefficient between two such species A and B is
expressed as:

rAB $

P
i¼1;nR

mi;Axid
i
B

%%%
%%%

max PA;CAð Þ
; ð9Þ

where the production and consumption of species A are defined as:

PA ¼
X

i¼1;nR

max 0; mi;Axi
! "

; ð10Þ

CA ¼
X

i¼1;nR

max 0;&mi;Axi
! "

: ð11Þ

In the above equations, xi are the net reaction rate of the ith reac-
tion evaluated from composition U and kinetic model M; mi;A is the
stoichiometric coefficient of species A in reaction i, and

di
B ¼

1 if the ith reaction involves species B;
0 otherwise:

&
ð12Þ

Eq. (9) can be extended to better quantify the impact of removing a
species in addition to a previously removed set of species [9]:

rAB;fGg $

P
i¼1;nR

mi;Axid
i
B;fGg

%%%
%%%

max PA;CAð Þ
; ð13Þ

where fGg is the set of species already removed. di
B;fGg is unity, if the

ith reaction involves B or any species in subset fGg, and is zero
otherwise.

4.2. Path-dependent coefficients

To go beyond direct interactions, DRGEP defines
path-dependent coefficients that quantify the coupling between
any directly or indirectly related species A and B. Assuming geo-
metric damping, and again, for a given composition U and kinetic
model M, the coupling between A and B through a reaction path p is
written as:

rAB;p ¼
Yn&1

i¼1

rSiSiþ1 ; ð14Þ

with S1 ¼ A; Sn ¼ B; Si is on the reaction path p that links A and B;n is
the number of reactions involved in path p. Since many paths can
exist linking A to B, only the most important one is retained:

RAB $ max
all paths p

rAB;p: ð15Þ

RAB is calculated following the implementation used in [9]. Briefly,
starting from target A, all possible paths of degree n;n being the
number of edges separating A from a given species B are explored
successively, starting at n ¼ 1, and RAB tracks the maximum rAB;p

encountered on those paths. The algorithm stops when paths of
degree nþ 1 return coefficients below a very small cut-off number,
guaranteeing that none of the higher-degree paths would be yield
rAB;p values larger than the current maximum. Additional details
on graph search algorithms in this specific context can be found
in [44]. RAB can be interpreted as the magnitude of the error made
in the prediction of species A if species B is removed [9].
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4.3. Target-specific coefficients

In a similar way, the overall importance of B to the target set T
for a given composition U and kinetic model M is defined by:

RB;U $max
T2T

RTB: ð16Þ

4.4. Extension to multiple composition states

The above results can be extended to an ensemble of composi-
tions D to yield the DRGEP coefficient of species B over D:

RDB ¼max
U2D

RB;U: ð17Þ

Whether referring to a single composition U or a set of composi-
tions D, the DRGEP coefficients can be viewed as an ns-vector, RU

or RD, respectively, in an ns-dimensional real space, which we term
the DRGEP coefficient space and denote by R.

4.5. Scaling factors

By construction, the DRGEP coefficients are for a large part inde-
pendent of the mass fractions of target species present in the com-
positions used to derive them. An alternative definition with
scaling factors is therefore introduced in [9] to account for the rel-
ative importance of individual targets among the compositions
contained in D. Defined for any composition U in D, these scaling
coefficients aT;U are written:

aT;U ¼ max
all atoms a

aa
T;U

maxU2D aa
T;U

 !

; ð18Þ

where

aa
T;U ¼

Na;T jPT & CT j
Pa

: ð19Þ

In the above equations, a refers to each element present in the sys-
tem (C, H, O and N for hydrocarbon combustion), Na;T is the number
of atoms a in target species T, and PT and CT are the production and
consumption rates, respectively, of any target species T (Eqs. (10)
and (11)). Pa is the pseudo-production rate of atom a, defined as

Pa ¼
X

all species A

Na;A max 0; PA & CAð Þ: ð20Þ

This scaling coefficient is unity for compositions in which the target
contributes to its maximum (over all compositions in D) to the
exchange of atoms between species, and zero when, for instance,
the target species has been consumed entirely. Eq. (16) is
re-defined to include the scaling factor:

eRB;U $ max
T2T

aT;URTB; ð21Þ

the scaled DRGEP coefficients still being defined as in Eq. (17):

eRDB ¼max
U2D

eRB;U: ð22Þ

The scaled coefficients vector eRD are used in the following, and the
tilde is dropped.

4.6. DRGEP reaction coefficients

Simply replacing Eq. (9) by

rAri $
mi;Axi
%% %%

max PA; CAð Þ
; ð23Þ

in the above procedure quantifies the importance of individual reac-
tions on the prediction of the targets, resulting in a nr-vector RD;r ,
used during the reduced modeling stage.

5. Implementation details

In the following, we assume that a database D has been assem-
bled, which contains a large number of full compositions U that
densely sample the portion of the composition space relevant for
the combustion simulation of interest. The number of composi-
tions in this database is nD. Details on how to obtain such a data-
base using a suitably chosen PaSR are provided in Section 6.

5.1. Classifying space C

We define the classifying space C, of specified dimension
nC , by a subset I ¼ fI1 . . . InCg of the composition variables included
in U (species in H and temperature), and the injective mapping
function C:

C : F! C; C Uð Þ ¼ C; ð24Þ

where the ith component of C is defined by

Ci ¼
UIi &UDIi ;min

UDIi ;max &UDIi ;min

: ð25Þ

In Eq. (25), UDIi ;min =max refers to the minimum/maximum values of UIi

observed across the entire database D. The subset I is chosen so
that the corresponding variables span the nC-dimensional subspace
of F closest to the nC-dimensional principal component space
formed by the first nC principal components of the compositions
in the database D with each variable rescaled between 0 and 1 fol-
lowing Eq. (25). More information on this procedure can be found in
Yang et al. [45]. This definition of C satisfies two important con-
straints: (i) C is cheap to evaluate, which is essential for a
computationally-efficient classification method, and (ii), the func-
tion C retains most of the compositional variance found in D, which
we expect to translate into good selectivity when classifying com-
positions. In addition, each component of C is bounded between
zero and one.

5.2. Partitioning

The objective of the Partitioning algorithm is to partition the
classifying space C into NR regions RJ¼1;...;NR , determined so that
for each index J, compositions U 2 F that satisfy

J Uð Þ ¼ J; ð26Þ

share similar chemical kinetic characteristics. This has two practical
implications: (i) the compositions in RJ can be represented using a
much smaller representation /J; and (ii) the short-term time evolu-
tion (over time interval Dt) of each of these compositions in RJ can
be described accurately by a common specialized kinetic model MJ

much smaller than the original detailed model MD. Instead of con-
sidering all compositions U 2 F satisfying Eq. (26) to delineate the
regions, we first restrict the analysis on the nD discrete sample com-
positions contained in the database D mentioned above. The
Partitioning procedure is described in three stages: the first one pre-
sents the overall, iterative structure of the algorithm, the second
provides the steps required at each iteration, and the third describes
how the optimal set of NR regions is chosen.

( Algorithm structure. Cutting hyperplanes H (by definition, of
dimension nC & 1) are iteratively introduced in C to isolate
groups of sample compositions with similar short-term kinetics.
The partition structure is recorded in a binary tree, whose nodes
contain the hyperplanes equations (fully determined by their
normal vector V and one anchor point P, both nC-vectors) and
whose leaves are associated with increasingly refined regions
and the subset of sample compositions they contain. A
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two-dimensional illustration of the iterative procedure used to
create and store the list of hyperplanes that define each region
in C is provided in Fig. 4 for a database D containing 6
compositions.
( Iteration step. The same task has to be accomplished during each

iteration of the partitioning procedure: given an initial region
that contains a subset Dm ) D of nDm compositions (determined
by a previous iteration, or initially Dm ¼ D), find the hyperplane
H in C-space that optimally divides the region, and therefore
the set of compositions Dm, into two sub-regions/subsets with
more homogeneous kinetic characteristics. The concept of
kinetic homogeneity of a region is defined here as the potential
to derive a specialized kinetic model of minimal size able to
describe accurately the short-term time evolution of any com-
position belonging to this region.
We use the positive DRGEP coefficients RDm (Eq. (22)) defined
based on Dm to form an estimate of the kinetic homogeneity
of the ensemble of compositions Dm as:

HDm ¼ jjR
Dm jj1 ¼

Xns

i¼1

jRDm
i j ¼

Xns

i¼1

RDm
i : ð27Þ

The smaller that H is, the more specialized and reduced the cor-
responding kinetic model can be, as is briefly justified below. By
construction of the DRGEP coefficients, and especially Eq. (22),
this definition satisfies the following observations: (i) the largest
value of H is obtained for the full composition database D (no
sub-division); (ii) the value of H of any subset of Dm is necessar-
ily equal to or smaller than HDm ; and (iii) if all compositions in a
set are identical, the homogeneity of any subset is equal to that
of the set itself.
Reduced kinetic models tailored for a given set of sample com-
positions are obtained by removing from the mechanism all spe-
cies with a DRGEP coefficient less than a user-defined threshold.
This threshold can be interpreted as an approximation of the
actual prediction error introduced by the reduction [9]. As a con-
sequence, a low value of H for a set is associated with low
DRGEP coefficients and more species removed from the model
for a given reduction error threshold. The objective of each iter-
ation is therefore to identify a hyperplane Hm that divides Dm

into two complementary (left and right) subsets, Dm;L and Dm;R,
contained in subregions Rm;L and Rm;R, respectively, that mini-
mizes the kinetic inhomogeneity, or ‘‘cost’’:

cDm ¼ HDm;L þHDm;R ¼ jjR
Dm;L jj1 þ jjR

Dm;R jj1: ð28Þ

A global minimum, if it exists, would be computationally pro-
hibitive to obtain given the large number of compositions typi-
cally included in the initial database D. Therefore, a simplified
approach is adopted here that achieves a significant decrease
in the value of H of each subregion, while remaining computa-
tionally affordable. The algorithm is described in Fig. 5.
( Consolidation into a partition with NR regions. Without any con-

straints on the number of regions, the iterative partitioning pro-
ceeds until C is partitioned into nD regions, each of them
containing a single composition U from D. To restrict the num-
ber of regions to the specified value NR, the complete tree is
analyzed to identify the upper tree with NR leaves that
minimizes

ctree ¼
XNR

J¼1

HDJ ; ð29Þ

where the databases DJ are those formed by all compositions U
contained in region J. This is done in two steps, efficiently imple-
mented using dynamic programming and recursion: in a first
pass, the values of H associated with each leaf and node in the

complete tree are computed. By construction, leaves of the com-
plete tree represent regions containing a single composition
(denoted by Uleaf ), hence

Hleaf ¼ jjRUleaf jj1: ð30Þ

On the other hand, the value of H of a node is defined as

Hnode ¼ jjRDnode jj1; ð31Þ

where Dnode is the set of compositions in the leaves originating
from this node. Once the optimal upper tree is identified, all
hyperplanes below the terminal elements of this upper tree
are removed, effectively consolidating regions into the specified
number NR. Figure 6 illustrates the consolidation process on the
same partition problem as before, bringing the number of
regions from a maximum of 6 to the specified value of NR ¼ 4.

The final result of this partitioning is a binary tree with a hyper-
plane H ¼ fV;Pg at each node, and the index J of a distinct region at
each leaf. Given a value of the classifying variable C, the tree can be
traversed to determine the corresponding region J. The tree is tra-
versed by moving to a node’s left or right child, depending on the
sign of ðC& PÞ * V.

5.3. Reduced modeling

The Partitioning step establishes the structure of a partition of C

and F into NR regions, each region RJ containing a subset DJ of size
nDJ of the original composition database D. The objective of the
Reduced Modeling step is to identify a reduced kinetic model MJ

able to accurately describe the short-term time evolution of any
composition belonging to region RJ . We assume that nDJ is large
enough to characterize the chemistry relevant to region RJ , and
therefore it is sufficient to obtain a model MJ which is accurate
for all compositions in DJ .

5.3.1. Definition of error
In order to quantify the accuracy of a model MJ , we define a nor-

malized error in composition incurred over a reaction sub-step. For
a composition in D, here denoted by UDð0Þ, in region J (i.e.,
J ðUDð0ÞÞ ¼ J), the composition after a reaction sub-step is

UD Dtð Þ ¼
Z Dt

0
S UDðtÞ
! "

dt; ð32Þ

where S is the chemical source term given by the detailed mecha-
nism. Using instead the model MJ , the corresponding reconstructed
composition after the reaction sub-step is denoted by U Dtð Þ. Based
on these two compositions after reaction, we define the model error
(for model MJ and the initial condition UDð0Þ) to be

eUDð0Þ $
jjUD Dtð Þ &U Dtð Þjj2
jjUD Dtð Þjj2

: ð33Þ

5.3.2. Reaction sub-step with reduced modeling
If the reduced representation contains no locally-important

species, so that all non-zero species are present in the model MJ ,
then the reaction sub-step using the reduced kinetic model con-
sists of the following steps:

1: /Jð0Þ ¼ RF!J UDð0Þ
! "

; ð34Þ

2: /JðDtÞ ¼
Z Dt

0
SJ /JðtÞ
! "

dt; ð35Þ

3: U Dtð Þ ¼ RJ!F /JðDtÞ
! "

; ð36Þ

where SJ is the chemical source term given by the reduced kinetic
model MJ .
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If instead the reduced composition contains locally-significant
species (with mass fractions by), the treatment is more complicated,
because these species are not included in the reduced model. (This

is especially relevant when considering PPAC-DRGEP and ISAT
combinations, as discussed in Section 8.1.) Locally-significant spe-
cies are kinetically inactive (i.e., essentially inert): the only role

Fig. 4. Illustration of the iterative partitioning algorithm applied to a two-dimensional classifying space C and a sample composition database containing 6 elements. (a)
Initial state. Numbered dots indicate the location in C space of each composition in the database, obtained through CðnÞ ¼ CðUðnÞÞ, n = 1, . . . ,6. All compositions initially belong
to a single region R1. (b) First iteration. A hyperplane H1, defined by its normal vector V1;1 and anchor point P1;1, is placed in C, creating two distinct regions R1 and R2. (Note
that in each iteration the regions’ indices may be re-defined.) The binary tree recording the partition structure now counts one node, containing H1, and two leaves,
corresponding to R1 and R2. All points P in R1 satisfy ðP& P1;1Þ * V1;1 < 0, while all points in R2 satisfy ðP& P1;1Þ * V1;1 6 0. In this example, compositions are split into {1,2,3} in
R1, and {4,5,6} in R2. (c) Second iteration. Each previously determined region containing two or more compositions is split further into two subregions using two additional
cutting hyperplanes, H21 and H22. A total of four regions are obtained. The partition binary tree is updated correspondingly. (d) Final iteration. Each region still containing more
than one composition is split further. Once each region contains just a single composition, no further refinement is possible. The final result is a binary tree with nD terminal
leaves and nD & 1 hyperplane nodes. Compositions belonging to regions far from one another in the tree are expected to have different kinetic characteristics.
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they play is through their thermal capacity and as acting as third
bodies in reactions. We approximate these effects by treating all
locally-significant species as being equivalent to an equal mass of
a specified inert, which we take to be N2.

To implement this treatment in the reaction fractional step
described above, after the reduction process (Eq. (34)), the mass
fraction of N2 is increased by bytot $

Pbyi, and the value of by in
/Jð0Þ is set to zero. Then after reaction (Eq. (35)), the mass fraction
of N2 is decreased by bytot and the original value of by is restored.

It may be noted that this treatment requires that a speci-
fied inert must be one of the species represented in each
model, although in principle different models could have dif-
ferent species as the designated inert. For the PaSR case con-
sidered here, N2 is present in every model, so this condition
is satisfied.

5.3.3. Generation of reduced kinetic models
For each region J, the DRGEP methodology is used to generate a

set of models of different sizes and resulting in different errors.
Such a pair of model and error is denoted by fMJ

%%
e; eg and has

the following properties:

1. For every composition U in DJ , the model error eU is at most e.
2. All regionally-significant species (as defined below) are retained

in the model.

3. Locally-significant species (as defined below) are not retained in
the model, but are treated according to the procedure above
when evaluating eU.

4. Subject to 1, 2, and 3: the number of species included in MJ
%%
e is

minimum, as is the number of reactions.

A species is deemed to be regionally significant if its mass frac-
tion exceeds esig ¼ 10&3 for at least 10% of the samples in DJ , that
is, 10% of the sample compositions contained in region RJ of the
composition space. It is deemed locally significant for a composition
U if it is not regionally significant, but its mass fraction in U still
exceeds esig ¼ 10&3. The reason for imposing condition 2 is that
the DRGEP methodology eliminates essentially inert species, even
if they have large mass fractions, and eliminating such species
from the model results in large conversion errors. Condition 3 is
a fail-safe mechanism that prevents any one composition with
unusually large amount (compared to other compositions in the
region) of an inactive species to dominate the model error.

Algorithm 1 details how the DRGEP methodology is used to
generate a list of reduced models. Each successive model in the list
has smaller size and (usually) larger error.

Algorithm 1. Species and reaction elimination algorithm applied
to the database DJ to produce a list ! of k pairs fMJ

%%
e; eg of reduced

models MJ
%%
e with errors e.

Fig. 5. Tasks performed at each step of the Partitioning iterative procedure. (a) For each composition U in database Dm , the DRGEP coefficients RU (R space) and the classifying
composition C (C space) are computed. (b) In R space, the first principal component vector V of the ensemble of normalized DRGEP coefficients R̂U , defined as
bRi

U ¼ RU
i =

1
nD

P
U2Dm

RU
i for i ¼ 1; . . . ;nS , is computed (left). Compositions in Dm are then projected orthogonally onto V and ranked according to their distance dU along the

direction of V. Sub-databases Dc
m;L and Dc

m;R are defined for any value dc , by separating compositions with dU < dc from those with dU 6 dc (middle). The value of dc ;d
+ , leading

to minimum of cm determines D+m;L and D+m;R used in the final step (right). (c) Each composition is colored based on its belonging to D+m;L or D+m;R . The final step aims at
identifying the hyperplane in C-space that best reproduces this coloring, that is, the hyperplane that creates two subdatabases Dm;L and Dm;R as close as possible to D+m;L and
D+m;R . (Note that one-to-one correspondence cannot be achieved in general due to the non-linearity of the relationship between U and RU .) This is done using covariance
ellipsoids, as described in Appendix.
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1: Set all species as RETAINED and ACTIVE.
2: Set all reactions to RETAINED.
3: k ¼ 0
4: d ¼ 10&2

5: for i ¼ 1 to ns do
6: Compute RDJ , account for NON-RETAINED species using

Eq. (13).
7: Sort the elements of RDJ by increasing value.
8: Set the status of species i with smallest, non-zero RDJ

i
coefficient to INACTIVE

9: Set reactions involving species i to REMOVED.
10: If species i is not regionally or locally significant, set its

status to REMOVED.
11: Create reduced model MJ from all RETAINED species and

reactions.
12: Evaluate the model error eS ¼maxU2DJ eUð Þ using MJ .

13: Compute RDJ ;r , account for NON-RETAINED species and
REMOVED reactions (Eq. (13)).

14: Sort the elements of RDJ ;r by increasing value.
15: eR  eS.
16: while eR 6 ð1þ dÞeS do
17: Set status of reaction j with smallest RDJ ;r

j coefficient
to REMOVED.

18: Update reduced model MJ from all RETAINED species
and reactions.

19: Evaluate eR ¼maxU2DJ eUð Þ using MJ .
20: e eR;MJ

%%
e  MJ

21: k kþ 1
22: Add the pair fMJ

%%
e; eg as the kth element of the model

list !.

To improve the ranking ability of DRGEP, sensitivity analysis
coefficients can be used to replace RDJ when e becomes larger than
a pre-defined value. The sensitivity coefficient of species A is set to
0 if A is INACTIVE, and set to eA

SA ¼maxU2DJ eA
U, where eA

U is evalu-
ated using the kth model in !, further reduced by removing species
A and all corresponding reactions.

When an adaptive simulation is performed with a specified
error tolerance ec , for every region J, the model MJ used is the
smallest one in the list ! satisfying e 6 ec .

5.4. Classification

This and the next two sub-sections describe the operators
needed in the adaptive simulation stage, namely Classification,
Reconstruction, and Reduction. Note that both Reduction and
Reconstruction are also used to evaluate eU in the Reduced
Modeling algorithm.

The Classification operator J identifies the region J a composi-
tion U belongs to through a simple binary tree search done in

Fig. 6. Consolidation of the complete tree obtained in Fig. 4 into an optimal upper tree with NR ¼ 4 regions. (a) The consolidation procedure first computes the H values of
each element in the tree: the 6 terminal leaves R1 to R6, and the 5 nodes H1, H21, H22, H32, and H33. The optimal upper tree is chosen among the 3 possible 4-leaf upper trees of
this structure, as that minimizing ctree (Eq. (29)). In this case, cmin

tree ¼ HfU1g þHfU2g þHfU3g þHfU4 ;U5 ;U6g . (b) Accordingly, the hyperplane H22 and H33 are removed, thereby
merging regions R4, R5, and R6. The final Partitioning binary tree is trimmed to the optimal 4-leaf upper tree identified above. Sample compositions are now labeled as
belonging to one, and only one, region out of the 4 contained in the partition.
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the tree formed in the Partitioning stage. First, the value of the clas-
sifier is determined as C ¼ CðUÞ, (Eq. (24)). Each node in the tree
contains the equation of a cutting hyperplane H ¼ fV;Pg, where
V and P are the normal vector and an anchor point of this hyper-
plane in the classifying space. Starting from the root of the tree,
the scalar product C& Pð Þ * V is computed, and its sign decides
which node (or leaf) to access next. The procedure is repeated until
a leaf is reached. The index of the region associated with this leaf is
returned as J.

5.5. Reconstruction

The RJ!F Reconstruction operator reconstructs a full composi-
tion vector U from a reduced representation /J that involves the
reduced set of species hJ and locally-significant species with mass
fractions by. While various reconstruction methods have been
tested involving various levels of complexity and assumptions,
we conclude that the most robust operation is simply to set the
state represented by U to be identical to that represented by /J .
This is achieved by: setting all species not represented in /J to zero
in U; setting all other species mass fraction in U to the correspond-
ing mass fractions in /J; and setting the temperature in U to be the
same as that in /J . This operation conserves enthalpy and species
(and therefore also elements and the normalization condition on
mass fractions).

5.6. Reduction

The last operator that needs to be defined is the RF!J Reduction
operator, which performs the reverse of the Reconstruction opera-
tor, i.e. taking a full representation and converting it into the
reduced representation /J . A straightforward reduction is adopted
here which conceptually involves the following steps:

1. Consider the full representation U ¼ fY; Tg.
2. Set Yi ¼ 0 for every species i that is neither included in the

model MJ nor is locally significant (which is determined by
comparing Yi to esig).

3. Rescale the mass fractions Y so that they sum to unity.
4. Set the mass fractions yJ and by to the corresponding values in Y,

and set T to the same temperature as in the full composition to
obtain the reduced composition /J ¼ fyJ; by; Tg.

Because of steps 2 and 3, neither species nor elements are con-
served in the reduction. In addition, enthalpy is not conserved (as it
could be with a different specification of T in the reduced represen-
tation). The errors resulting from discarding and rescaling species
are referred to as conversion errors. We explored variants with
improved conservation properties, but none proved superior over-
all in accuracy and efficiency compared to the simple treatment
described above.

5.7. Summary of inputs to the adaptive chemistry methodology

We summarize here the inputs to the adaptive chemistry
methodology, and give some of their values used in the tests. The
required inputs are:

( The detailed chemical mechanism MD.
( The targets T specified for DRGEP, which we take to be fuel, O2,

OH, CO, CO2, and heat release.
( The PaSR parameters, including the time step Dt.
( The number nD of samples in D, which we take to be

nD = 10,000.

( The dimension, nC , of the classifying space, which we take to be
nC ¼ 10.
( The number of regions, NR, which we vary between 1 and 100.
( The error tolerance, ec , which we vary over a wide range.
( The mass-fraction threshold for significant species esig, which

we take to be esig ¼ 10&3.

6. PaSR test case and composition database

The configuration chosen to develop and test the adaptive
methodology presented above is a non-premixed propane/air
piloted PaSR. We consider the detailed mechanism for propane oxi-
dation developed by Curran et al. [46], which consists of ns ¼ 115
species involved in nr ¼ 1300 reactions. The PaSR has three inflow
streams: pure fuel, pure oxidizer (air), and a pilot stream defined as
the burnt products of a stoichiometric propane/air mixture in
chemical equilibrium. The pressure is 1 bar throughout. The fuel
and air streams are at a temperature of 300 K, while the pilot
stream is at the adiabatic flame temperature of 2272 K. Initially,
all particles in the reactor are set to the pilot composition. The
number of particles, and hence the total mass, in the reactor
remains constant. The particle compositions change in time
through reaction and mixing, as described in Section 2. All relevant
parameters are included in Table 1.

The PaSR is run with the above parameters for 10 residence
times. We observe a transient state, which depends on the initial
conditions, for about the first three residence times, after which
the PaSR operates in a statistically stationary state. A sample com-
position database D containing nD = 10,000 distinct compositions
is assembled by randomly sampling the particles in the reactor
over the entire duration of the simulation. (The performances of
the adaptive chemistry approach is found to be rather insensitive
to the number of compositions nD included in D.)

7. Results

In this section we present a quantitative assessment of both the
accuracy and efficiency of the adaptive chemistry strategy, as
applied to the PaSR simulation.

7.1. PaSR test runs

The parameters used in the PaSR simulations are provided in
Section 6; some of the parameters used in the adaptive methodol-
ogy are given in Section 5.7; and the remainder are given below. A
series of PaSR simulations are performed with a broad range of val-
ues of the error tolerance, ec , and for five values of NR, namely
NR ¼ 1, 10, 30, 60, and 100. Consequently, in the pre-processing
stage, for each value of NR, the partitioning algorithm is applied
to determine the NR regions, and for each region the reduced mod-
eling is used to produce the list of models MJ

%%
e. Then, prior to a sim-

ulation with a specified value of ec , the smallest models are
selected from the list, subject to the condition e 6 ec .

The adaptive PaSR simulations are then carried out according to
the algorithm described in Section 3 and illustrated in Fig. 3. A
(non-adaptive) PaSR simulation is also performed using the
detailed chemical mechanism MD and the full representation to
serve as reference for error measurements. Quantities extracted
from the tests with the adaptive strategy and with detailed chem-
istry are indicated with the superscripts ‘‘A’’ and ‘‘D’’, respectively.

It is found that the results obtained for the degenerate case
NR ¼ 1 are qualitatively different from those obtained with larger
values of NR. This case is degenerate in that the adaptive method-
ology is in fact not adaptive. Henceforth we therefore refer to this
as the non-adaptive case.
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In order to create a fair test of the adaptive method, the seed
that generates the pseudo-random numbers used in the PaSR sim-
ulations is changed from that used to create the sample database
D. Therefore the PaSR particles follow trajectories in the same
areas of the composition space, but they are not strictly identical
to those obtained in the pre-processing stage. Particle evolutions
are recorded over a total time s equal to 10 residence times, corre-
sponding to nt ¼ 1000 time steps.

7.2. Definition of error

Errors are measured for species mass fractions and tempera-
ture. Rather than comparing reactor statistics, such as mean values,
we opt for a more stringent test of our approach by comparing
individual particle trajectories obtained in the detailed and adap-
tive PaSR simulations. We choose the following integrated error
measure, written here for any quantity X (species mass fraction
or temperature):

eX ¼
Pnt

k¼1
Pnp

n¼1jX
ðnÞ;A
k & XðnÞ;Dk j

Pnt
k¼1
Pnp

n¼1jX
ðnÞ;D
k j

: ð37Þ

In the above equation, XðnÞ;Ak and XðnÞ;Dk denote the value of quantity X
for particle n on time step k of a PaSR simulation with adaptive
chemistry and detailed chemistry, respectively.

7.3. Control of errors

Figure 7 shows the incurred error in temperature, eT , as a func-
tion of the specified error tolerance ec for each of the five values of
NR. As may be seen, the adaptive strategy is successful in control-
ling the error, in that, for each value of NR, the incurred error eT

decreases monotonically as the error tolerance ec is decreased,
until a floor is reached at the very low value of 10&6. In a turbulent
combustion calculation, an error of 1% in species mass fractions
and 5 K in temperature (i.e., eT , 3' 10&3) is generally regarded
as more than acceptable.

We recall that there are two sources of error. The first is in the
reduced kinetic model, and this is directly controlled by ec . The sec-
ond is the conversion error. This is controlled indirectly by ec , since
the smaller ec , the larger the reduced models, and hence the smal-
ler the number (and magnitude) of species omitted from the mod-
els. As may be seen from Fig. 7, for a fixed value of the error

tolerance ec , the incurred error eT increases with increasing NR.
This is likely due to a combination of two effects. First, the larger
NR, the more crossings there are likely to be from one region to
another, and hence more conversions are performed. Second, the
larger NR, the smaller (on average) the regions, and hence fewer
species are needed to represent the more specialized chemistry,
and hence there are more species omitted from the models.

It is the incurred error (not the error tolerance) that is of conse-
quence, and in comparing two approaches or variants, this should
be done at fixed incurred error, not at fixed error tolerance.
Consequently, henceforth, we use eT to parameterize the error,
and we plot quantities of interest against eT rather than ec.

Figure 8 shows the incurred error for different species mass
fractions plotted against the incurred error in temperature for
the adaptive case with NR ¼ 30. As may be seen, for CO2, C3H8

and H2O, the species errors are very close to the temperature error,
whereas the error for CO is about 5 times that for T. Results for dif-
ferent values of NR and for different species are similar to those
shown in Fig. 8. The important observation is that eT provides a
good characterization of all of the errors.

To help relate the error levels as defined in Eq. (37) to actual
temperature changes, in Fig. 9 (top), the mean reactor temperature
is plotted over three residence times for the detailed and adaptive
simulations with eT ¼ 10&3 and NR ¼ 30. As may be seen, the two
curves are essentially indistinguishable, and so we plot their differ-
ence in Fig. 9 (bottom). Overall, the maximum temperature dis-
crepancies are around 2.5 K out of 1650 K, and more importantly,
these discrepancies are found not to increase in any significant
manner over time, an essential property for the adaptive strategy
to be viable in large-scale simulations. This behavior has been
observed consistently for all quantities discussed below.

7.4. Computer time

The PaSR simulations are performed in parallel on a Beowulf
cluster based on Nehalem X series processors, QDR Infiniband,
and 2 GB of RAM per core. For the simulation using detailed chem-
istry, the wall clock time needed to reach t ¼ 10sres on 12 cores is
4020 s. For a given number of regions NR, the partitioning, reduc-
tion, and model evaluation over the range of incurred errors shown
in Fig. 8 require on average 103 CPU hours. This is but a small frac-
tion of the typical cost of LES/PDF simulations, which can quickly
reach upward of 105 CPU hours even for simple flames. This cost
therefore appears very reasonable, especially since the computa-
tional overhead due to the adaptive treatment of the chemistry
at run time in the PPAC approach is negligible.
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Fig. 7. The incurred error in temperature, eT , vs. the specified error tolerance, ec , in
PaSR simulations. Comparison between the non-adaptive case, NR ¼ 1 (H) and
adaptive cases with NR = 10 ( ), 30 ( ), 60 ( ), and 100( ). The unit slope line
(thin black line) is added for reference.
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Fig. 8. Incurred error in species eYi vs. incurred error in temperature eT for NR ¼ 30.
Species are: CO2 ( ), CO ( ), C3H8 ( ), H2O (H).

3248 Y. Liang et al. / Combustion and Flame 162 (2015) 3236–3253



We define the relative time trel of an adaptive simulation as its
CPU time divided by that of the simulation with detailed chem-
istry. Figure 10 shows the relative time trel as a function of the
incurred temperature error for the different values of NR. It may
be observed that, as expected, all the simulations using reduced
models require less CPU time than those using the detailed mech-
anism (i.e., trel is less than unity). Furthermore, the adaptive cases
(NR > 1) require, typically, just half the time of the non-adaptive
case (NR ¼ 1). At an incurred error of eT ¼ 3' 10&3, the CPU time
required for the adaptive cases is about 15% of that for the detailed
mechanism, and about 55% of that for the non-adaptive case. In
general, the CPU time decreases weakly with NR, for NR P 10.

The above comparisons are much in favor of the adaptive
approach, even in a PaSR with pair-wise mixing. It is expected that
its benefits will be even more pronounced in a turbulent combus-
tion calculation, since the portion of particles carrying inerts or
burnt compositions, described efficiently with few variables, is
much higher than in a PaSR.

The results presented so far use DRGEP combined species and
reaction elimination, as described in Section 5.3. While already
effective, the standard DRGEP approach can be complemented by
sensitivity analysis, to refine the ranking of species identified as
of intermediate importance by DRGEP. Some incremental gain in
CPU cost is observed when switching to sensitivity coefficients in
lieu of DRGEP coefficients for ec larger than 10&8, as shown in
Fig. 11. In view of these results, the cost vs. benefit of using expen-
sive sensitivity analysis methods to further decrease the complex-
ity of the region-specific reduced representations and models for
larger reference mechanisms warrants further investigation.

7.5. Computer memory

Another quantity of interest relates to the storage requirements
of the PaSR simulations. This can be measured by the relative num-
ber of species, nrel, defined as the number of species in the reduced
models used (averaged over all particles and time steps) divided by
the number of species in the detailed mechanism, ns:

nrel $
1

ntnpns

Xnt

k¼1

Xnp

n¼1

nðnÞ;As;k ; ð38Þ

where nðnÞ;As;k is the number of species in the reduced model used for
particle n on time step k.

Figure 12 shows nrel as a function of the incurred error eT for
each value of NR. This shows, for any specified incurred tempera-
ture error in the adaptive PaSR simulations, the degree of reduction
that can be achieved by the method. All curves are monotonically
decreasing with increasing eT , from values very close to unity, cor-
responding to very low error levels at one extreme (in which the
reduced models are very close to the detailed model), to large
errors and very small reduced models at the other extreme. A clear
difference is observed between the non-adaptive case (NR = 1) and
the adaptive cases, with the number of species retained to achieve
a specified error tolerance being up to a factor of two lower for the
adaptive cases (compared to the non-adaptive case). Consider
eT ¼ 10&3 as a typical desired error level: in this case of the order
of 30% of the species are needed (on average) in the adaptive sim-
ulations, compared to roughly 60% for the non-adaptive case
(NR ¼ 1). Some minor reduction in nrel is observed when increasing
the number of regions NR above 10. However, in the range of error
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Fig. 9. Top: Evolution of the mean temperature in the PaSR for the detailed (hTDi,
red solid line) and adaptive (hT Ai, blue dashed line) simulations using eT ¼ 10&3 and
NR ¼ 30. (The two lines are indistinguishable.) Bottom: the absolute difference
DT ¼ jhT Ai& hTDij in the mean temperature between the two simulations. (For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)
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Fig. 10. Relative CPU time (adaptive chemistry to detailed chemistry) vs. the
incurred temperature error. Comparison between the non-adaptive case, NR ¼ 1,
(H) and adaptive cases with NR = 10 ( ), 30 ( ), 60 ( ), and 100( ).

10−8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

t r
el

εT

10−6 10−4 10−2 100

Fig. 11. Relative CPU cost vs. the incurred temperature error eT for NR ¼ 30.
Comparison between reduced modeling performed using standard DRGEP coeffi-
cients ( ), and reduced modeling performed using standard DRGEP coefficients up
to ec ¼ 10&8, and sensitivity coefficients thereafter ( ). The non-adaptive results of
Fig. 10, which are not using sensitivity analysis, are added here for reference.

Y. Liang et al. / Combustion and Flame 162 (2015) 3236–3253 3249



typically of interest (10&4–10&2), cases with NR P 30 can be con-
sidered equivalent. Unless stated otherwise, NR ¼ 30 is therefore
used in all cases below.

7.6. Conservation properties

In the detailed PaSR simulation, over the mixing and reaction
fractional steps, when summed (or averaged) over all particles,
both enthalpy and the mass fractions of elements are conserved.
However, in the adaptive simulations, the reduction operator
RF!J (see Section 5.6) is not conservative. For elements, this is
because some species mass fractions are set to zero, and then the
mass fractions are rescaled to sum to unity. For the enthalpy, it
is because the reduction is performed as constant temperature
rather than at constant enthalpy. However, it is expected that the
resulting conservation errors are small, since if a species is not part
of a representation, its mass fraction is small by construction
(certainly less than esig). To test this hypothesis, the total enthalpy
and element mass fractions are followed over time in adaptive
PaSR simulations using NR ¼ 30 and a range of error tolerances.
The normalized conservation error beX for a conserved quantity X
is defined as:

beX ¼
1
np

1
nt

Xnt

k¼1

Pnp
n¼1ðX

ðnÞ
kþ & XðnÞk ÞPnp

n¼1XðnÞk

%%%%%

%%%%%; ð39Þ

where, for particle n on time step k;XðnÞk and XðnÞkþ denote the value of
X before and after the mixing and reaction fractional steps, respec-
tively. Conservation errors for enthalpy and element mass fractions
are plotted in Fig. 13 as functions of the temperature error eT . Note
that as mentioned above, those conservation errors are integrated
over the full simulation, and no significant increase of the instanta-
neous values is observed over time. When the number of species
retained decreases (leading to higher conversion errors) and tem-
perature error increases, errors for the conserved quantities remain
below 10&5 for all cases and quantities of interest, indicating satis-
factory treatment of particle conversion between various
representations.

7.7. Regions accessed and model utilization

A major assumption at the core of the adaptive strategy is that
the sample composition databaseD is representative of the particle

compositions that occur in the adaptive simulations. To confirm
the validity of this assumption a posteriori, the distribution of com-
positions in D across regions is compared to the frequency at
which particles are classified into those same regions during the
adaptive PaSR simulation. Recall that, since pairing in the PaSR is
a random process, we do not recover the database compositions
during the adaptive simulation. Results are shown in Fig. 14,
demonstrating similar region access frequency between
pre-processing and adaptive simulation stages. Figure 15 illus-
trates the trajectory of a particular particle in C space, by providing
side-to-side the temperature evolution and the index of the region
the particle belongs to at time t. Comparing both plots shows that
changes in pairing partners are often followed by a change in
region (i.e. model switches often occurs a few time steps after dis-
continuities in temperature gradients) but particles can also switch
to a different representation outside of those discrete events.

While the above result brings confidence that D contains the
needed relevant kinetic information, being able to predict model
utilization also has important implications for large-scale simula-
tions, especially in terms of load balancing and coupling with tab-
ulation methods such as ISAT.

8. Discussion

In this section we discuss some possible improvements and
extensions to the adaptive methodology, and then consider future
applications of the method in LES/PDF simulations.
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Fig. 12. Relative number of species nrel (adaptive to detailed) vs. the incurred error
in temperature eT . Comparison between the non-adaptive case, NR ¼ 1 (H) and
adaptive cases with NR = 10 ( ), 30 ( ), 60 ( ), and 100( ).
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8.1. Improvements and extensions

It is evident that the number of regions NR is not a computa-
tional limitation, in that of order tens are sufficient, whereas of
order hundreds could be handled without difficulty in computa-
tions. One can therefore consider local improvements to the parti-
tioning: if a region is found to require a large reduced kinetic
mechanism, it can (recursively) be split into two smaller regions,
provided that (as expected) these two regions have smaller
models.

The most obvious and beneficial extension to the methodology
is to combine it with in situ adaptive simulation (ISAT) [23,24]. For
each region J, a separate ISAT table can be used to perform the reac-
tion fractional step much more efficiently than by integrating the
kinetic equations. In ISAT, both the work to retrieve from the table,
and the storage needed per table entry scale as the square of the
number of species. Furthermore, the performance of ISAT is found
to degrade significantly beyond about 50 species. Hence, there is
great benefit in having NR tables for reduced representation with
relatively few species (e.g., nJ

s < 50), compared to one table involv-
ing hundreds or thousands of species.

It is straightforward to combine the adaptive methodology with
ISAT in serial computations (or to use purely local processing [43] in
parallel simulations); and the fact that there are many tables opens
up new possibilities for efficient parallel implementations.

8.2. Use in LES/PDF simulations

For the PaSR test case used here, it is guaranteed that the data-
base D of compositions generated in the pre-processing stage are
representative of those in the adaptive simulations, since both
stages use statistically-identical PaSR simulations. For an adaptive
LES/PDF simulation, we propose two sub-stages in the
pre-processing stage in order to generate a suitably representative
database. In the first sub-stage, one or more PaSR simulations are
performed with conditions representative of the LES/PDF simula-
tion to generate the first database D1, and the reduced models
are generated with a reasonably small error tolerance. Then, using
the adaptive method, a coarse LES/PDF simulation is performed, for
example, with double the grid spacing in each direction, and half
the number of particles and simulation time compared to the full
simulation, resulting is approximately 1/64 of the cost of the full
simulation. This coarse LES/PDF is used to generate the representa-
tive database D used subsequently in the adaptive strategy. (A
small error tolerance is used in the first sub-stage to ensure that

all needed species are included in D1.) When considering large
detailed mechanisms (with more than, say, 300 species) it is
impracticable to perform even a coarse LES/PDF with the detailed
mechanism. This is why a PaSR is used in the first sub-stage.
Note that further investigation is required to evaluate the relative
costs involved in such a process, especially when compared to
on-the-fly adaptive techniques. Yet, this provides a path forward
to systematically handle simulations with very large kinetic mech-
anisms, which would not be otherwise feasible.

In contrast to on-the-fly adaptive chemistry methodologies, in
the present method, the errors are not controlled during the simu-
lation, but are instead controlled as part of the pre-processing
stage. Their control during the adaptive simulation depends on
the database D used in the pre-processing stage being completely
representative. It is, therefore, desirable to be able to measure the
errors during the adaptive simulation, and hence to verify that they
are indeed controlled (and possibly to invoke a correction strategy
if they are not). This can be done with negligible computational
penalty (as it is in ISAT [24]) by randomly sampling a small fraction
(e.g., 10&4) of the particle compositions prior to the reaction frac-
tional step, and comparing the reaction mappings obtained with
the reduced model and the detailed mechanism.

9. Conclusions

A novel adaptive strategy specifically tailored for particle PDF
methods to simulate turbulent combustion systems has been
presented.

Rather than reducing the chemistry on-the-fly during the com-
bustion simulation, a set of reduced representations and reduced
kinetic models is assembled a priori, which are assigned adaptively
to each individual particle during the simulation. The approach
includes the following major characteristics:

( In the pre-processing stage: a database D of representative
compositions is generated; a classifying space is defined and
suitably partitioned into NR regions, for each of which DRGEP
is used to generate a locally-accurate reduced kinetic mecha-
nism MJ , much smaller than the detailed mechanism; and the
particle composition in region RJ is represented by a reduced
representation /J .
( In the adaptive simulation stage, for each PDF particle: a classi-

fication algorithm based on a low-dimensional binary tree is
used to identify the region J the particle’s composition belongs
to; the reduced kinetic model MJ is used to advance the particle
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Fig. 15. Temporal evolution of temperature T (left) and region index J (right) for one particle in an adaptive simulation with NR ¼ 30 in a non-premixed propane/air PaSR.
Jumps in T are due to the inflow/outflow events.
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composition in the reaction fractional step; and, the reduced
representation of a particle composition can be adaptively cho-
sen and converted as it moves from one region to another.

Based on these characteristics, the methodology is referred to as
Pre-Partitioned Adaptive Chemistry using DRGEP, or PPAC-DRGEP.

The performance of the adaptive methodology has been demon-
strated for a propane/air non-premixed PaSR. The results show that
the incurred errors are well controlled by the specified error toler-
ance, and can be reduced well below acceptable levels. Even
though the methodology does not exactly conserve elements or
enthalpy, nevertheless, the error in theses conserved quantities is
very small. Typically, the CPU time using the adaptive strategy is
15% of that using the detailed mechanism; and 50% of that using
a single reduced mechanism. On average, only 30% of the species
are included in the reduced models. These computational gains
are expected to be much larger in PDF simulations and with larger
detailed mechanisms.

As discussed in Section 8, in future work, the adaptive method-
ology will be combined with ISAT and used in LES/PDF simulations
of turbulent flames.
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Appendix

This appendix details the algorithm used to accomplish the par-
titioning step depicted in Fig. 5c. We consider a set of compositions
Dm, divided into two complementary subsets D+m;L and D+m;R, of size
nL and nR respectively. D+m;L and D+m;R have been obtained by mini-
mization in R space of cm along the first principal component direc-
tion of the normalized DRGEP coefficient vectors RU, for all U 2 D.
We want to identify an hyperplane H ¼ fV;Pg in C such that

CU & Pð Þ * V > 0 for U 2 D+m;L; and

CU & Pð Þ * V < 0 for U 2 D+m;R; ð40Þ

where CU ¼ C Uð Þ (Eq. (24)). Due to the non-linear implicit transfor-
mation between C and R spaces, the existence of an hyperplane in C

that satisfies those inequalities for all U 2 Dm is not guaranteed.

Instead, a pragmatic approach based on covariance ellipsoids is
used. The steps are as follows (all operations are made in C-space):

1. Form the means mL and mR of CU vectors from compositions
contained in D+m;L and D+m;R, respectively.

2. Form the ellipsoid EL defined by

EL $ fCj C&mLð ÞT C&1
L C&mLð Þ 6 s2g; ð41Þ

where C 2 C;CL is the covariance matrix of all CU fromD+m;L, and s
determines the size of the ellipsoid. ER is similarly defined. This
step is illustrated in Fig. 16a.

3. Determine the smallest value of s at which EL and ER intersect.
This is achieved using the ELL_LIB library developed by Pope
[47].

4. The normal vector V of the cutting hyperplane H is taken to be
that of the plane tangent to both ellipsoids at the point of inter-
section (Fig. 16b).

5. The anchor point P is chosen along the direction of V to mini-
mize the kinetic inhomogeneity cm of the resulting Dm;L and
Dm;R, following the same procedure as that in Fig. 5b(ii).
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