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ABSTRACT: Computational fluid dynamics (CFD) tools are increasingly gaining importance to obtain detailed insight into
biomass gasification. A major shortcoming of the current CFD tools to study biomass gasification is the lack of computationally
affordable chemical kinetic models, which allows detailed predictions of the yield and composition of various gas and tar species
in complex reactor configurations. In this work, a detailed mechanism is assembled from the literature and reduced to a compact
model describing the gas-phase reactions of biomass gasification in the absence of oxygen. The reduction procedure uses a graph-
based method for unimportant kinetic pathways elimination and quasi-steady-state species selection. The resulting reduced
model contains 39 gas species and 118 reactions and is validated against the detailed model and two experimental configurations:
the pyrolysis of volatile species, such as levoglucosan, in a tubular reactor, and the fast pyrolysis of biomass particles in a drop
tube reactor. The reduced model predicts the evolution of major gas products (e.g., CO, CO2, CH4, H2) and various classes of tar
(e.g., single-ring aromatics, oxygenated aromatics, PAHs) produced during biomass gasification. The capability of the reduced
model to adequately capture the chemical process in a complex reactor geometry at an acceptable computational cost is
demonstrated by employing it in a simulation of a pseudo two-dimensional laboratory-scale fluidized bed reactor.

1. INTRODUCTION
Biomass (e.g., wood, energy crops, agricultural residue,
municipal waste, etc.) is recognized as an essential renewable
source of energy that can help in reducing the current
dependence on fossil fuels. Thermochemical conversion in
fluidized bed reactors (FBRs) is a promising technology to
convert low-value lignocellulosic biomass into high energy
density gaseous or liquid fuel. This process utilizes heat and/or
physical catalysts to convert biomass to an intermediate gas or
liquid, followed by an additional conversion step to transform
that gas or liquid into a biofuel. It has the ability to robustly
handle a wide range of feedstock and to produce both liquid
and gaseous fuels.
Thermochemical conversion of biomass can be divided into

two major classes: pyrolysis and gasification. Pyrolysis is
performed at relatively low temperatures (773−872 K)
maximizing the yield of liquid fuel, whereas gasification is
performed at higher temperatures (1073−1273 K) maximizing
the yield of gaseous fuel. In this work, we focus on the latter,
namely, biomass gasification. One of the major challenges in
making biomass gasification an economically viable technology
is the reduction or elimination of tars, which are complex
mixtures of condensable hydrocarbons.1,2 Different tar species
exhibit different properties, for example, heterocyclic com-
pounds (e.g., phenol) exhibit high water solubility, whereas
polycyclic aromatic hydrocarbons (PAH) can condense at
relatively high temperatures.2 On the basis of its composition,
tar can condense in downstream equipment, causing fouling or
plugging, and can also produce hazardous tar−water mixtures,2
and therefore needs to be removed. At present, design and
scale-up of FBR for biomass gasification are mostly empirically
based, relying heavily on expensive and lengthy pilot-scale

reactor studies. Yet, measurements in these reactors are unlikely
to be detailed enough to improve our understanding of tar
formation processes for various operating conditions and
feedstock, necessary to efficiently optimize the conversion
process.3 Mathematical modeling and simulation tools provide
a much more flexible and affordable framework to investigate
the controlling chemical and physical processes, with the
potential to play a determining role in the development and
deployment of the technology.
While the field has seen recent major advances, further

improvements are still required, especially in the description of
chemical processes, before numerical tools can be utilized to
their full potential. Gomez-Barea et al.,4 in their review paper,
recognize a strong need for modeling efforts in biomass
devolatilization and tar chemistry. However, the chemistry of
this conversion process is extremely complicated to model due
to the high variability of the feedstock, the complex structure of
biomass particles, as well as the interaction between chemistry
and the multiphase flow dynamics typically found in gasification
reactors.5 These difficulties have hindered the development of
detailed kinetic models for biomass thermochemical conversion
chemistry and have entailed the use of detailed mechanisms for
combustion and pyrolysis of various hydrocarbon species,
developed in the combustion literature, to represent biomass
gasification. For instance, Debiagi et al.5 and Norinaga et al.6

have developed detailed kinetic models for thermochemical
conversion of biomass starting from the kinetic models for
various hydrocarbons available in the combustion literature.
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However, the resulting detailed mechanisms consist of a large
number of elementary and nonelementary reactions ( (10 )46 )
and chemical species ( (10 )36 ), making them computationally
unaffordable to use in CFD simulations. These detailed
mechanisms are thus more suitable for zero-dimensional
configurations neglecting the transport processes. In the
absence of a computationally affordable chemical mechanism,
most of the existing modeling studies of biomass thermochem-
ical conversion either neglect the gas-phase reactions7−9 or use
very simple kinetic models.10−21 These kinetic models describe
biomass devolatilization and evolution of gas-phase primary
products using a few model compounds and global reactions,
whose rates are fitted using available experimental data, such as
Thermogravimetric Analysis (TGA). While these global models
can be fitted a priori to provide trends in terms of the major
controlling parameters, such as reactor operating temperature,
they are not appropriate whenever more quantitative or
detailed information is sought from CFD calculations. For
instance, these models cannot be used to understand how
tertiary tars are created in highly unsteady multiphase flows. An
intermediate level of chemical detail is then desirable that can
provide refined predictions in simulations, while remaining
computationally affordable. The goal of this paper is to develop
such a model for biomass gasification. Note that we will focus
on the initial volatile release and subsequent gas-phase
evolution in the absence of oxygen, the resulting model
requiring to be complemented by a kinetic model to fully
describe the long-term heterogeneous reactions of gasification.
Several automated kinetic reduction techniques have been

developed in the combustion community. In general, these
reduction techniques analyze a detailed mechanism for a given
set of conditions to predict the redundant species and reactions
and remove them from the chemical mechanism. Recently,
Løvaṡ et al.22 used a combined reaction flow and sensitivity
analysis to develop a compact mechanism for gas-phase
reactions of biomass combustion. This mechanism was
developed in a homogeneous reactor configuration for a fixed
inlet gas composition and variable temperature.
In this work, we focus on the secondary gas-phase reactions

occurring at gasification conditions and compile a detailed
mechanism from the literature describing those reactions. We
then use the DRGEP (Direct Relation Graph with Error
Propagation) technique23 to extract a reduced model from the
detailed one. The reduction procedure accounts for the
variability in the primary products expected to be found in
gasification reactors by using a statistical Partially Stirred
Reactor (PaSR) configuration. Coupled with an appropriate
biomass devolatilization model (here, the work of Corbetta et
al.,24 as described below), the resulting reduced model
describes the secondary gas-phase reactions of biomass
devolatilization products in a pure nitrogen environment at
temperatures relevant for gasification (1073−1273 K). Note
that partial oxidation and steam reforming are not included in
this study.
The remainder of this paper is organized as follows: Section

2 describes how the reference chemical kinetic model for the
gas-phase chemistry and biomass devolatilization chemistry are
assembled from the literature. In Section 3, the automatic
reduction procedure used to generate a compact model that
accurately reproduces the dynamics of the detailed model is
presented. Validation is detailed in Section 4. Finally, in Section
5, the applicability of the reduced model in complex CFD

configurations is demonstrated by simulating a pseudo two-
dimensional laboratory-scale FBR.

2. REFERENCE DETAILED CHEMICAL KINETIC MODEL
A description of the reference detailed chemical models for the
solid biomass devolatilization and the subsequent secondary
gas-phase reactions of the primary devolatilization products is
first provided.

2.1. Biomass Devolatilization Model. The high varia-
bility of feedstock and the structural complexity of biomass
particles prevent the development of detailed kinetic models for
describing the transition of the solid biomass into gas and char
during devolatilization. In the absence of a more detailed
description of the biomass devolatilization, the lumped
chemical model developed by the CRECK modeling group24

is used here to describe the first step of biomass gasification, i.e.,
devolatilization. This model consists of 24 reactions involving
12 solid species, 7 trapped gases slowly releasing from the solid
matrix, and 20 gas-phase products. The initial composition of
biomass is represented by a combination of cellulose,
hemicellulose, and 3 types of lignin. The rates of the lumped
reactions are fitted to match a series of thermogravimetric
weight loss experiments. It is worth noting that these reactions
are irreversible, implying that the gas composition surrounding
the particle does not affect the chemistry going on at the
particle level. This model has been validated against a series of
experiments for various operating conditions and feed-
stock.24−26

2.2. Primary Product Decomposition and Tar For-
mation. The biomass devolatilization model creates a variety
of gas-phase species, called primary products, whose evolution
in the gas phase at gasification temperature must be modeled.
These molecules usually are high molecular weight heteroge-
neous species, such as levoglucosan or phenolic compounds.
Some of these molecules, often found in combustion systems
(e.g., phenol), have been extensively studied, and accurate
mechanisms for their decomposition to small hydrocarbons are
available. Recently, we have developed and extensively validated
a kinetic model for hydrocarbon pyrolysis and oxidation for
combustion applications, the latest version containing a large
selection of alkanes up to dodecane and aromatic species, such
as phenol, toluene, benzene, xylene, and two-ringed aromatics
(e.g., α-methylnaphthalene).27−32 In the combustion process,
ethylene is placed at the center of molecular growth, and we
assume that the same holds true for the tars growth in biomass
pyrolysis and gasification. To assemble the detailed model, we
combine several chemical modules independent from one
another, namely, a biomass devolatilization model to form
primary products from solid biomass, a primary product
decomposition model, and a detailed scheme for polycyclic
aromatic hydrocarbon formation. A few of the primary gas-
phase species produced by devolatilizing biomass are quite
specific to the biomass constitutive components, and have not
received the same amount of characterization as typical
combustion molecules. To describe their decomposition, the
lumped chemical reactions available from Calonaci et al.26 are
used. They include levoglucosan, 5-hydroxymethyl furfural,
hydroxyacetaldehyde, xylose, coumaryl, and their direct
decomposition products (see the Supporting Information
document for more details). In the pyrolysis conditions of
relevance here, the unimolecular decomposition reactions of
those compounds are controlling their overall decomposition
rates, as they are responsible for creating the initial radical pool.
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The chemical mechanism on which those reactions are added
being different from the one they have been developed for,
especially in terms of the small radicals chemistry, we found
that it was necessary to adjust slightly the unimolecular
decomposition rates for levoglucosan, 5-hydroxymethyl furfural,
and hydroxyacetaldehyde to properly capture the rates
experimentally measured by Shin et al.33 In those cases, the
rates proposed by Shin et al.33 were in general adopted, staying
as close to the branching ratios of Calonaci et al.26 as possible
whenever competing reactions were involved. One exception is
for hydroxyacetaldehyde, for which Calonaci et al. and Shin et
al.33 decomposition pathways were combined and manually
adjusted to reflect the added pathways.
The detailed model consists of 396 molecular species and

3210 elementary reaction steps and is validated against the
experiments by Shin et al.33 in Figure 1, and Norinaga et al.6 in

Figure 2. Shin et al.33 studied the pyrolysis of levoglucosan
(LVG), 5-hydroxymethyl furfural (HMF), and hydroxyacetal-
dehyde (HAA) in a flow tube reactor for temperatures ranging
from 773 to 1023 K. Norinaga et al.6 studied the secondary
pyrolysis of nascent volatiles generated from the fast pyrolysis
of cellulose in a tubular reactor in the temperature range of
973−1073 K. Assuming that there is no significant axial mixing
in the tubular reactors of both experiments, these reactors are
modeled as zero-dimensional isobar homogeneous systems. As
can be seen from Figures 1 and 2, simulation results show very
good agreement with the experiments, especially considering
the high uncertainty on initial conditions that sometimes exist
in the pyrolysis experiments. Additional validation cases
considering the evolution of phenolic and aromatics com-
pounds can be found in the Supporting Information document.

Figure 1. Pyrolytic decomposition of levoglucosan (LVG), hydroxyacetaldehyde (HAA), and 5-hydroxymethyl furfural (HMF): Comparison
between simulation results using the reference chemical model (lines) and experiments (Shin et al.,33 symbols). Different symbols indicate different
temperatures (square: 898 K, circle: 923 K, triangle: 948 K, and diamond: 973 K).

Figure 2. Pyrolytic decomposition of major cellulose devolatilization products: Comparison between simulation results using the reference chemical
model (lines) and experiments (Norinaga et al.,6 symbols). Different symbols indicate different temperatures (square: 973 K, circle: 1023 K, and
triangle: 1073 K).
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3. REDUCED CHEMICAL MODEL DEVELOPMENT
The reference kinetic model for the gas-phase reactions
described in the previous section is too complex to be used
even in simple CFD configurations. Therefore, the objective is
to identify the most important chemical reaction pathways for
gasification. This section describes how this objective is
achieved by extracting a compact model with 39 species and
118 reactions from the reference model with 396 species and
3210 reactions. Note that the reduction process does not affect
the solid-to-gas devolatilization model24 in any way.
3.1. Relevant Gasification Conditions. As all reactions

are not important at all conditions, the very first task is to
identify the conditions at which gasification will most likely take
place in an actual gasifier, in particular, the heating rate to
which biomass will be subjected. This step will help refine the
range of conditions over which the reduced chemical kinetic
model should be valid, and focus the reduction procedure on
the relevant kinetics. Table 1 shows the parameters used to

represent the devolatilization of biomass particles in an FBR.
The size of biomass particles varies between 300 μm and 1 mm
to represent the general size range found in many laboratory
gasification studies. Gas-phase properties, such as density,
specific heat capacity, conductivity, and viscosity, are computed
assuming pure nitrogen at the temperatures and pressure stated
in Table 1. To estimate typical heating rates, the Nusselt
correlation from Gunn34 is used along with the parameters
from Table 1. For these parameters, Biot numbers for the
biomass particles vary between 0.34 and 0.58, implying that
thermal gradients will be present in the biomass particles.
However, the purpose of Table 1 is to establish relevant
conditions in order to apply our chemistry reduction
algorithms. For this, an assumption of constant internal
temperature suffices. Simulations of biomass devolatilization
using the Corbetta et al. model,24 and neglecting secondary gas-
phase reactions, show that most primary gases are released from
the biomass between 773 and 873 K. With this assumption,
Figure 3 indicates that particles of size between 300 μm and 1
mm experience a heating rate of 6(103) K/s during
devolatilization. Therefore, a value of 1000 K/s is chosen as
representative of the heating rate for the reduction procedure.
3.2. Simulation Configuration. The relative importance

of chemical reaction pathways as estimated by the DRGEP
reduction methodology depends on the chemical compositions
and sample kinetic trajectories on which it is applied. As the
reference model is too complex to be used in a realistic reactor
configuration, we choose a statistical treatment to sample as
broadly as possible the chemical states and trajectories
occurring in a gasification reactor. For this purpose, the
computationally inexpensive and idealized partially stirred
reactor (PaSR) is used. Inside a PaSR, the composition and

properties of the fluid are represented by an ensemble of
notional particles, each carrying its own species composition
and temperature. The properties of each notional particle
evolve due to mixing, reaction, and inflow/outflow events such
that the mean thermochemical properties of the represented
fluid are statistically spatially homogeneous, but the fluid itself
is imperfectly mixed at the molecular level. The use of a PaSR
as sampling tool forces the reduction to be quite conservative,
thereby preventing important pathways to be removed from the
reduced kinetic model. It must also be noted that, because a
PaSR is not a mathematical representation of a physical system,
simulation results cannot not be directly compared to, or
interpreted in light of, experimental data.
The fluid is assumed to be an ideal gas-phase mixture that

evolves in the PaSR at a constant pressure, so that the full
thermochemical state or composition of the mixture Φ is
completely characterized by the species mass fractions Y and
the mixture enthalpy Φ ≡ Y: { , }/ / . The PaSR is continu-
ously fed by a user-specified number nstr of inflow streams of
prescribed compositions Φstr; it will be described later for the
biomass system under consideration. At any time t, the reactor
contains a constant, even number np of notional particles, the i

th

particle having composition Φ(i)(t). These compositions evolve
in time due to mixing, reaction, and inflow and outflow events.
These processes are described in more detail.
Inflow and outflow events occur at discrete times and change

the particle composition Φ in a discontinuous manner. In the
inflow/outflow event, nin particles are selected at random with
equal probability, and their compositions are replaced by the
inflow streams’ compositions. The integer number nin (= np ×
Δt/τres) is chosen according to the specified mean residence
time τres and time step Δt. Between these discrete times, the
composition evolves by a mixing fractional step and a reaction
fractional step. In the mixing fractional step, particles are paired
and ordered so that particles i and i+1 are partners for odd i (1
≤ i < np), and the ordinary differential equations

τ

τ

Φ = − Φ − Φ

Φ = − Φ − Φ

+

+ +

t
t t

t
t t

d
d

( ( ) ( ))

d
d

( ( ) ( ))

i m i i

mix

i m i i

mix

( ), ( ) ( 1)

( 1), ( 1) ( )
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Table 1. Parameters Used To Estimate Relevant Biomass
Particle Heating Rates for the Chemistry Reduction
Procedure

parameter value

gas temperature 1073−1273 K
particle temperature during devolatilization 773−873 K
pressure 1 atm
solid heat capacity 2300 J/kg·K
biomass bulk density 650 kg/m3

biomass particle diameters 300 μm to 1 mm

Figure 3. Typical heating rates experienced by the biomass during
gasification at the conditions described in Table 1.
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are solved for each pair of particles over time interval Δt. In this
equation, τmix is the specified pairwise mixing time scale. At
each time step, npair particles are selected randomly with equal
probability and shuffled to change partners. The integer
number npair (= np × Δt/τpair) is chosen according to the
specified pairing time τpair, typically taken equal to τmix. The
compositions after mixing evolve under isobaric, adiabatic
conditions over a time Δt according to

Φ = Φt
t

tSd ( )
d

( ( ))
i m

i m
( ),

( ),
(2)

where S is the chemical source term defined by the user-
provided reaction mechanism. This reaction fractional step
finally yields the particle compositions at t + Δt: Φ(i)(t + Δt).
The PaSR simulation setup described here will be used to

provide relevant compositions of biomass devolatilization
products expected to be found in real gasification reactors
and to compare the reduced model developed in this section
with the reference model.
3.3. Reduction Using DRGEP. The automatic chemical

mechanism reduction technique DRGEP23 is used to extract a
reduced model from the reference, detailed model. The
reduction procedure follows the steps outlined in Pepiot et
al.23 for species and reaction elimination and is performed using
the YARC reduction tool,35 a Perl/C implementation of
DRGEP and associated reduction techniques.

• Reduction Targets Selection. The first step in the
reduced model development is to identify a set of targets
; , most often specific species, that the reduced model
must reproduce accurately. In biomass gasification, it is
desirable to predict the yield of gaseous products and tar
species. Therefore, 5 major gas products: CO, CO2, H2,
CH4, and C2H4, water (H2O), and 3 major tar species:
benzene (C6H6, a single-ring aromatic), naphthalene
(C10H8, a polycyclic aromatic), and phenol (C6H6O, an
oxygenated aromatic) are selected as targets. Moreover,
13 primary devolatilization products described by the
reference devolatilization model, such as HAA, HMFU,
and LVG, are also incorporated into the targets list.

• Sample Composition Database. To evaluate the relative
importance of species and reactions for the given set of
targets, DRGEP requires an ensemble of sample
compositions representative of the simulations in which
the reduced model will eventually be used. For this
purpose, we use a PaSR configuration and assume that
the particles in the PaSR simulation will follow
trajectories in composition space that are representative
of those they would encounter in an actual reactor. The
simulation parameters are chosen based on previous
experience and best practices36 to ensure a broad range
of compositions relevant for our application, and the
residence time is adjusted to match the characteristic
time scale of the overall pyrolysis chemistry process.
Two inflow streams are continuously fed to the PaSR

to represent the release of the primary products from the
devolatilizing biomass into the hot nitrogen environment.
The first inflow stream consists of nitrogen gas at
temperatures varying between 1073 and 1273 K, while
the second inflow stream consists of the primary
products released during biomass devolatilization. The
second stream needs to account for the fact that a
gasification reactor contains biomass particles at different

stages of devolatilization, acting as variable sources of
primary products. To include this variability, the biomass
devolatilization process is represented stochastically by
sampling from the probability distribution function
(PDF) of the extent of biomass devolatilization. This
PDF is constructed by simulating biomass devolatiliza-
tion a priori using the reference chemical model.
The parameters used for these simulations are

summarized in Table 2. The PaSR simulations are

performed for three nitrogen temperatures: 1073, 1173,
and 1273 K. A database of 18,000 distinct chemical
compositions is created by randomly sampling the
compositions encountered in the PaSR simulations.

• Automatic Reduction and Error Estimation. The
automatic reduction procedure proceeds through two
distinct steps. In the first step, DRGEP analyzes the
composition database and quantifies the coupling
between species and reactions in the chemical mecha-
nism for the chosen target species in the form of
importance coefficients also known as DRGEP coef-
ficients. Species and reactions with the lowest value of
DRGEP coefficients are removed from the mechanism in
an iterative manner, providing a list of kinetic models of
decreasing complexity. More details about the imple-
mentation of the DRGEP technique can be found for
example in ref 37.
In the second step, the PaSR test configuration

(parameters provided in Table 2) is simulated using
each of the reduced models generated in the first stage,
and a posteriori errors on the targets are computed,
defined for any target ; as

∫
∫

ε =
|⟨ ⟩ − ⟨ ⟩ |

|⟨ ⟩ |

t t t

t t

( ) ( ) d

( ) d

t D R

t D
0

0

end

end

; ;

;
;

(3)

In this equation, ⟨ ⟩ t( ); designates the average of
quantity ; at time t over all particles contained in the
PaSR, and tend is taken here as 15 PaSR residence times.
A posteriori errors as a function of the number of species
nS for a few targets are shown in Figure 4. The reduction
process provides several mechanisms with decreasing
number of species and reactions; we choose the smallest
possible mechanism for which the error is less than 10%
for most of the species, and at most a factor of 2 for a few
groups of species. The mechanism with 60 chemical
species and 486 reactions is found to be the smallest
acceptable model generated automatically by the DRGEP
procedure and is shown by a dotted line in Figure 4.

Table 2. PaSR Simulation Parameters

parameter value

number of notional gas particles in PaSR 96
gas residence time 3 s
mixing time 0.3 s
biomass particle heating rates 1000 K/s
temperature of raw biomass 300 K
temperature of pure nitrogen stream 1073−1273 K
normalized mass flow rates of nitrogen stream 0.9
normalized mass flow rates of biomass stream 0.1
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3.4. Additional Reduction. In the DRGEP technique, a
species or a reaction is removed from the chemical mechanism
only when it is identified as unimportant for every single
composition in the database, which imposes a stringent
criterion on species and reaction removal. A species or a
reaction can be important for the local dynamics of a target, but
may not impact its global statistical behavior. Several
techniques have been developed in recent years to identify
those additional species and reactions, for example, the DRGEP
with the Sensitivity Analysis method.38 In this work, we use an
ad hoc semiautomatic technique that quantifies the impact of
species and reactions on the global statistical behavior of the
targets. This technique utilizes the global production/
consumption rates of each species for every reaction obtained
from the simulations of the PaSR test configuration using the
intermediate mechanism. The coupling between species and

reactions on the targets is quantified in a manner similar to the
DRGEP technique, but using the global production and
consumption rates of species instead. Potential species and
reactions that may have a minimal impact on the prediction of
global statistics of the targets are removed from the mechanism,
and the resulting model is simulated in the PaSR test
configuration to calculate a posteriori errors on the targets
using eq 3. A 44 species and 118 reactions mechanism is found
to be the smallest acceptable model after this step and is shown
by diamond symbols in Figure 4.

3.5. Quasi-Steady-State Approximations. Once the
above-mentioned strategies have removed as many species
and reactions as possible, quasi-steady-state (QSS) approx-
imations are introduced that replace the differential equation
for a given species by an algebraic expression much faster to
solve. All suitable QSS species are computed using algebraic

Figure 4. Error in the PaSR predictions as a function of the number of species nS retained in the skeletal model during the reduction process: (a)
CO, (b) H2O, (c) MPV, (d) A1, (e) AO, and (f) number of reactions nR retained in the model. Filled symbols: PaSR nitrogen stream temperature is
1073 K; open symbols: PaSR nitrogen stream temperature is 1273 K. Circles: automatic reduction; diamonds: semiautomatic reduction with quasi-
steady-state assumption.

Figure 5. Statistically steady-state mass fractions of various light gases, tar species, devolatilization products, and small radical pool: Comparison
between the reduced model (symbols) and the reference chemical model (lines) in a Partially Stirred Reactor (PaSR) configuration for the
temperature ranging from 1073 to 1273 K. Expanded species names are provided in Section 4.1.
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expressions consisting of non-QSS species. To keep the
calculation of QSS species simple and fast, it is made sure
that all of the algebraic expressions are linear.39 With this
constraint, 5 QSS species are identified: C2H5, CH2OH,
CH2CHO, C7H7, and CH2CO.
The final reduced kinetic model has 39 non-QSS species

(including N2), 118 reactions (including both forward and
backward reactions), and 5 QSS species.

4. VALIDATION OF THE REDUCED MODEL
In this section, the accuracy of the reduced model (39 species
and 118 reactions) developed in Section 3 is assessed for a
number of configurations. Three different test cases are
performed: (1) The PaSR test configuration is simulated
using both the reduced and the reference models, and major
product and tar species are compared. (2) The reduced model
is used in a zero-dimensional reactor configuration to simulate
the pyrolysis experiments of Shin et al.33 (3) The reduced
model is integrated with the CFD solver NGA40 to simulate
biomass gasification in the laboratory-scale Drop Tube Reactor
(DTR) of Chen et al.41 These validation cases are discussed in
the following subsections. Additional validation considering the
pyrolysis of phenol can be found in the Supporting Information
document.
4.1. Comparison in a Partially Stirred Reactor. The

PaSR configuration used to create the composition database in
Section 3 is used again here to compare the reduced model to
the reference model for the temperatures ranging from 1073 to
1273 K. The parameters used for these simulations are shown
in Table 2. After a statistically steady state is reached, the mass
fractions of gaseous products and tar species are averaged over
10 residence times to get mean steady-state mass fractions.
Since the reaction pathways are significantly altered due to the
high reduction ratio, the mass fraction of a few species are not
compared individually. Instead, these species are divided into
different groups based on their molecular weights, and the sum
of their mass fractions is compared.
Figure 5 compares the mean steady-state mass fractions of

relevant individual species and groups of species obtained from
the reduced and reference models. Predictions of the reduced
and reference models for major product gases: CO, CO2, CH4,
H2, and C2 (species with 2 carbon atoms), water (H2O), and
three classes of tars: single-ring aromatics (A1), polycyclic
aromatic hydrocarbons (PAH), and oxygenated aromatics
(AO) are in good agreement. In addition, the reduced model
is also able to predict light (LPV), medium (MPV), and heavy
(HPV) weight primary devolatilization products, and small
radicals pool (RAD). Those acronyms and their definitions are
summarized in Table. 3. Note that the assumption of constant
heating rate used in the reduction procedure is shown to have
negligible impact on the results, as is described in the
Supporting Information document.
The PaSR simulations are carried out on a Beowulf cluster

with Nehalem X series processors. The time per iteration per
processor for using the reduced model is −(10 s)36 and for the
reference model it is −(10 s)16 , corresponding to a reduction in
the CPU time by ∼99% by the reduced model. It must be
noted that in the PaSR simulations the majority of the time is
spent on the integration of the chemical source terms;
therefore, the saving in the CPU time is dominated by this
term. Reduction in computational expense is expected to be
even higher in CFD simulations as additional scalar transport

equations need to be solved for each species at every grid point
in the computational domain.

4.2. Pyrolysis in a Tubular Reactor. The reduced model
is used to simulate the tubular reactor experiments of Shin et
al.33 described in Section 2.2. Simulation results are compared
with the experimental measurements in Figure 6 and show
overall a good agreement. When compared to the simulations
performed with the detailed, reference mechanism (Figure 1),
we see that the prediction of hydroxymethyl furfural
decomposition is virtually unchanged by the reduction process,
but more significant changes are observed for levoglucosan and
hydroxyacetaldehyde, for which the decomposition rate has
been reduced. While agreement with the experimental data is
still satisfactory, those results indicate a larger sensitivity of
those molecules to the underlying small radical chemistry.

4.3. Fast Pyrolysis of Biomass in a Drop Tube Reactor.
Numerical simulations of the one-dimensional DTR of Chen et
al.41 are conducted and compared to the experimental results. A
schematic of the experimental DTR can be seen in Figure 7.
Chen et al.41 studied fast pyrolysis of millimetric sized biomass
particles (beech wood) in the DTR at 1073 and 1223 K. In the
experiments, particles are flake-like and are characterized by
their equivalent spherical diameters. Biomass particles and
nitrogen stream are continuously injected from the top of the
reactor, while the exhaust gas is sampled at the bottom. A
portion of this exhaust gas is then examined by several gas
analyzers. The distance between the locations of biomass
injection and gas collection is varied to get four residence
lengths: 0.3, 0.5, 0.7, and 0.9 m. The total amount of gas, tar,
and char produced is measured at these residence lengths.
Moreover, yields of major gas-phase components are also
provided.
The DTR presents a multiphase and multiphysics system;

therefore, simulations of this reactor require a reactive
multiphase flow solver. For this purpose, the reduced model
and the biomass devolatilization model are integrated with the
reactive multiphase CFD solver NGA,40 with a Euler−Lagrange
strategy42 to model gas−solid flows. NGA has been extensively
validated and used for various DNS and LES multiphase
reactive flow systems.43−50 Simulations were conducted for
biomass particles with the equivalent spherical diameter (dp) of
520 μm and two gas temperatures: T = 1073 K (simulation :1)
and 1223 K (simulation :2). Parameters used for :1 and :2
are provided in Table 4. In the DTR simulations, two modeling
issues are encountered related to (1) the reference devolatiliza-
tion kinetics model and (2) the shape of the particles. These are

Table 3. List of Species and Group of Species, and Their
Acronyms

acronyms name

A1 single ring aromatics (e.g., benzene)
AO oxygenated aromatics (e.g., phenol)
C2 gases containing two carbon atoms (e.g., ethylene)
HAA hydroxyacetaldehyde
HMF hydroxymethyl furfural
HPV heavy weight primary vapors (7+ carbon atoms, e.g., p-coumaryl)
MPV medium weight primary vapors (4−6 carbon atoms,

e.g., levoglucosan)
LPV light weight primary vapors (2−3 carbon atoms, e.g., glyoxal)
LVG levoglucosan
PAH polycyclic aromatic hydrocarbons (e.g., naphthalene)
RAD small radicals pool (e.g., H, OH)
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discussed in the following two subsections before the results of
the DTR simulations are presented.
Biomass Devolatilization Model. In the DTR simulations,

the biomass devolatilization chemistry is modeled by the
reference devolatilization model discussed in Section 2.1.
Preliminary DTR simulations could not accurately predict the
experimental yields of CH4, C2H4, and solid residue. This
difference is attributed to the fact that a significant portion of
these two gases remains trapped in the solid matrix in the
chemisorbed state. For simulation :1, Figure 8a shows the
evolution of the trapped species ( sp; ≡ CO, CO2, and
CH3OH) that are completely released from the biomass
particle during the devolatilization, whereas Figure 8b shows

that a few trapped species ( *sp; ≡ COH2, CH4, C2H4, and H2)
remain inside the biomass particle even after the complete
devolatilization. Figure 8c shows that, even long after the
completion of biomass devolatilization, the amount of solid
residue is much higher than that of char; this difference is also
attributed to the trapped species *sp; . This is corroborated by
the fact that the predicted value of char, Ychar = 0.10, is close to
the solid residue measured in the experiments, SRexp = 0.08 ±
20%.
Similar discrepancies have been very recently investigated by

Anca-Couce et al.,51 who performed biomass pyrolysis
experiments and used the reference devolatilization model to
predict the experimental yields of various species. They
introduced several modifications in the devolatilization
mechanism to significantly improve the agreement between
the modeled results and their experimental database, mainly for
the yields of light hydrocarbons and the yield and composition
of char. The focus of the present paper being the secondary gas-
phase reactions, we introduce here a simple ad hoc modification
of the Corbetta et al. model24 considering only the current
experiment at hand, as described below, and refer the reader to
the study of Anca-Couce et al.51 for a more comprehensive
treatment of this issue. To improve the predictions of CH4,
C2H4, and solid residue, we adjust the parameters of the
reactions, present in the reference devolatilization model,
governing the release of *sp; . In the reference devolatilization

model, activation energies (Eact) for the release of *sp; are much

Figure 6. Pyrolytic decomposition of levoglucosan (LVG), hydroxyacetaldehyde (HAA), and hydroxymethyl furfural (HMFU): Comparison
between simulation results using the reduced kinetic model (lines) and experiments (symbols, Shin et al.33). Different symbols indicate different
temperatures (square: 898 K, circle: 923 K, triangle: 948 K, and diamond: 973 K).

Figure 7. Schematic of the experimental Drop Tube Reactor;41 the
computational domain considered in this study is indicated in red.

Table 4. Parameters for the Drop Tube Reactor Simulation

parameter value

domain length (Lx × Ly × Lz) 0.9 m × 0.02 m × 0.02 m
number of cells (nx × ny × nz) 900 × 1 × 1
inlet nitrogen velocity 0.279 m/s
temperature of inlet nitrogen stream 1073 K (:1) and 1223 K (:2)
injection rate of biomass particles 7.545 × 10−7 kg/s
biomass density 710 kg/m3

biomass particle size 520 μm
biomass composition (wt %)

cellulose 43.91
hemicellulose 23.85
C-rich lignin 3.24
H-rich lignin 14.99
O-rich lignin 6.71
ash 0.4
moisture 6.9
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higher compared to Eact for the release of sp; . To make the

release of *sp; faster, we replace the Eact for the release of *sp;
by the Eact for the release of trapped CO. Simulation :1 is
repeated with the modified values of the Eact; the resulting
evolution profiles of sp; and *sp; are shown in Figures 8d and
8e, respectively, and the evolution of char and solid residue is
shown in Figure 8f. These figures show that, as the
devolatilization proceeds, all the trapped species get released
from the biomass particles and the amount of solid residue,
SRsim = 0.1, is close to the experimental value, SRexp = 0.08 ±
20%. Therefore, the reference devolatilization model with the
modified value of Eact for *sp; is used in the DTR simulations.
Shape of the Particles. Biomass particles used in the

experiments have a flake-like shape. The shape of the particle
affects the drag force from the surrounding gas and the heat
transfer rate experienced by the particle. In the simulations,
particles are treated as spheres; therefore, a correction must be
made to include the effect of the proper particle shape while
calculating drag force and heat transfer rate. Chen52

experimentally measured the slip velocity of the biomass
particles and estimates a correction factor of 1.5 that can be
multiplied with the drag correlation for a spherical particle to
estimate the drag on a flake-like particle. In the DTR
simulations, this correction factor is used in the drag calculation
for the biomass particles. Although drag is corrected for the
flake-shaped particles, any correction for heat transfer rate is
not provided in the experimental study. Therefore, we calculate
correction factors to estimate the convective and radiative heat
transfer rates of the flake-shaped particles based on the
calculation for spherical particles.
Convective heat transfer rate for a particle can be expressed

as

= Δq hA Tconv (4)

where A is the surface area of the particle, Δt is the temperature
difference between the particle surface and the surrounding gas,
and h is the convective heat transfer coefficient. h can be

calculated from the Nusselt number, Nu, as = λ
h

Nu
l

f , where λf
is thermal conductivity of the gas surrounding the particle and l
is the characteristic length, which is equal to the diameter (dp)
for a sphere and the thickness (tp) for a flake-shaped particle.
The Nusselt number is calculated using Gunn’s correlation.34

Average area of the flake-shaped particles is calculated based on
the experimental measurements52 of particle dimensions. The
ratio of the average area of the flake-shaped particles (A*) to
that of an equivalent spherical particle (A) is calculated to be
1.33. Using the thickness, tp, as the characteristic length in the
expression for h, the convective heat transfer rate for the flake-
shaped particles becomes

* = * Δ⎜ ⎟
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟⎛
⎝

⎞
⎠q

d
t

h A
A

A Tconv
p

p (5)

For a biomass particle of equivalent diameter dp = 520 μm, the
experimentally measured average particle thickness (tp) is 250
μm. Substituting these values in eq 5, we get

* = Δ ∼ Δ =⎜ ⎟⎛
⎝

⎞
⎠q h A T hA T q520

250
(1.33 ) 2.8 2.8conv conv (6)

Equation 6 implies that the convective heat transfer rate for the
flake-shaped particles (corresponding to an equivalent spherical
diameter of 520 μm) is about 2.8 times faster than that for the
equivalent spherical particles.
The radiative heat transfer rate from the reactor walls to the

biomass particle is modeled by

ω σ= −q A T T( )rad p wall p
4 4

(7)

where ωp is the particles emissivity, σ is the Stefan−Boltzmann
constant (= 5.6704 × 10−8 Wm−2 K−4), Twall is the reactor wall

Figure 8. Evolution of trapped species, char, and solid residue during biomass devolatilization in DTR simulation :1 using the unmodified reference
devolatilization model described in Section 2.1 (first row) and the modified model described in section 4.3 (second row). (a) and (d) show the
evolution of trapped species that are completely released from the biomass using the unmodified and modified devolatilization model, respectively.
(b) and (c) show that for the original devolatilization model some trapped species are not released from the biomass, while those trapped species are
released after the modification as shown in (e) and (f). Yields are normalized with the initial mass of biomass particle.

Energy & Fuels Article

DOI: 10.1021/acs.energyfuels.7b01634
Energy Fuels 2017, 31, 12120−12132

12128



temperature, and Tp is the particle surface temperature. ωp is
calculated as a linear combination of wood (ωw = 0.7) and char
emissivity (ωc = 0.92).53 For a flake-shaped particle, A is
replaced by A*, and we get

ω σ* = * − =⎜ ⎟⎛
⎝

⎞
⎠q A

A
A T T q( ) 1.33rad p wall p rad

4 4

(8)

Equation 8 implies that the radiative heat transfer rate for the
flake-shaped particles (corresponding to an equivalent spherical
diameter of 520 μm) will be about 1.33 times faster than that of
the equivalent spherical particles.
To evaluate the effect of these corrections for convective and

radiative heat transfer rates on biomass devolatilization, :1 is
performed with the corrected rates (qconv* and qrad* ) and the
uncorrected rates (qconv and qrad). Figure 9 shows that using the

corrected heat transfer rates significantly improves the
prediction of the shrinkage rate of the particles. Therefore, in
the DTR simulations, convective and radiative heat transfer
rates for the spherical particles are multiplied with 2.8 and 1.33,
respectively, to make correction for the shape of the particles.
Comparison with Experimental Data. After incorporating

the modifications in the reference devolatilization model and
the heat transfer rates, simulations :1 and :2 are run until
steady state is reached. Figure 10 compares the simulation

predictions of the mass fraction of major gas products and
particle diameters at various reactor lengths to the experimental
values. Agreement between the simulation predictions and
experimental measurements is very good considering the
possibility of the high degree of variability in various parameters
and physical properties. These simulations are performed on a
single core of a MacBook laptop and required (1 hour)6 to
reach steady state, which shows the affordability of the current
reduced model to simulate laboratory-scale reactors.

5. APPLICATION TO A FLUIDIZED BED REACTOR
The reduced gas-phase chemistry model, coupled with the
biomass devolatilization model of Corbetta et al.,24 is used to
simulate a pseudo-2D configuration (rectangular geometry) of
an experimental FBR54 using NGA.40 Parameters used in this
simulation are reported in Table 5. Initially, the sand bed is

fluidized without biomass particles by injecting the nitrogen gas
from the bottom of the reactor. Once a fluidized sand bed is

Figure 9. Biomass diameter (for simulation :1) at various reactor
lengths: Comparison between experimental measurements (symbols),
and simulation predictions with corrected heat transfer rate (solid line)
and uncorrected heat transfer rate (dashed line).

Figure 10. Steady-state mass fraction (dry basis) of various gas species and particle diameter at different reactor lengths: Comparison between
simulation results (lines) and experimental measurements (symbols) for particle diameter, dp = 520 μm, and two gas temperatures: 1073 and 1223 K.

Table 5. Parameters for the FBR Simulation

parameter value

domain length (Lx × Ly × Lz) 0.15 m × 0.02 m × 0.0015 m
number of cells (nx × ny × nz) 300 × 40 × 3
inlet nitrogen velocity 0.2 m/s (6umf)
inlet nitrogen temperature 1073 K
number of sand particles 105

size of sand particles 200 μm
density of sand particles 2650 kg/m3

injection rate of biomass particles 5 × 10−6 kg/s
size of biomass particles 200 μm
density of biomass particles 907 kg/m3

biomass composition (wt %)

CELL 47.24
HCELL 31.49
LIGC 2.78
LIGH 6.48
LIGO 4.63
ash 0.37
moisture 7.0

Energy & Fuels Article

DOI: 10.1021/acs.energyfuels.7b01634
Energy Fuels 2017, 31, 12120−12132

12129



achieved, biomass particles are injected into the reactor at a
constant mass flow rate. Simulation is run long enough to reach
a statistically steady state. Figure 11 shows the instantaneous

values of the mass fraction of various classes of tar normalized
by their maxima at statistically steady state. The location of the
mass fraction maximum of oxygenated aromatics (AO) is very
different from that of single-ring (A1) and multiple-ring (PAH)
aromatics. It indicates that different tar species can have
different length and time scales associated with their formation
and consumption. The mass fractions of the major gas and tar
species at different reactor lengths are shown in Figure 12. As
expected, CO is the major gas product, followed by CO2, CH4,
C2, and H2. Among tars, single-ring aromatics are the major
species, followed by oxygenated aromatics, and polycyclic
aromatic hydrocarbons (PAH). Another important observation
made from Figure 12 is that the mass fraction of all the light
gases, and A1 and PAH increase along the reactor height, while
it decreases for AO.
The simulation was performed on 96 cores on the cluster

mentioned in Section 4.1 and required 3000 CPU hours and
9000 CPU hours per flow-through time (0.75 s) for the pure
sand fluidization case and the reacting case with biomass
injection, respectively. This simulation shows the ability of the
reduced model to be used with a CFD solver to simulate
laboratory-scale FBR in an affordable manner. The present
reduced model combined with a CFD solver provides the
capability to track the evolution of major gas and tar species for
different operating conditions.

6. CONCLUSION
An adequate description of the chemical kinetics in the CFD
tools is imperative for the detailed simulations of biomass
gasification; however, the large size of detailed mechanisms
makes their use prohibitive in the CFD simulations. In this
work, we assemble a detailed chemical model (396 species,
3210 reactions) for the secondary gas-phase reactions of
biomass gasification and reduce it to a compact model (39
species, 5 quasi-steady-state species, and a total of 118
reactions) using automated strategies. The reduced model
shows very good reproducibility of the statistical yields of
various species of interest at a fraction of computational cost
compared to the detailed model. The savings in computational
time are expected to be higher in CFD simulations where a set
of extra partially differential equations (PDEs) need to be
solved for the scalar transport equations. The reduced model,
integrated with the CFD solver NGA, is used to simulate a
laboratory-scale drop tube reactor (DTR) experiment showing
good agreement with the experiments. By simulating a pseudo
two-dimensional FBR with the reduced model, it is shown that
an adequate description of the gas-phase reactions can be used
with CFD tools in a computationally affordable manner. The
reduced model developed here is small enough to be integrated
with a CFD solver to study the secondary gas-phase reactions
of biomass gasification in laboratory-scale reactors.
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Figure 11. Instantaneous mass fraction of different classes of tar: A1
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simulation. Mass fractions of AO and PAH are multiplied by 10 to
compare their behavior with A1.
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■ NOMENCLATURE
A=surface area of biomass particle based on an equivalent
diameter (Section 4.3, m2)
A*=surface area of biomass particle derived from exper-
imental data (Section 4.3, m2)
dp=equivalent diameter of biomass particle (Section 4.3, m)
Eact=activation energy (J/mol)
/=enthalpy (J)
h=convective heat transfer coefficient (W/m2K)
l=characteristic length of biomass particle (m)
nin=number of inflowing particles per time step in the PaSR
np=number of particles in the PaSR
npair=number of particles changing partners per time step in
the PaSR
nR=number of reactions in kinetic model
nS=number of species in kinetic model
nstr=number of inflowing streams in the PaSR
Nu=Nusselt number
qconv=convective heat transfer rate (J/s)
qconv* =corrected convective heat transfer rate (J/s)
qrad=radiative heat transfer rate (J/s)
qrad* =corrected radiative heat transfer rate (J/s)
S=chemical source term in the PaSR
SRexp=solid residue in experiment (Section 4.3)
SRsim=solid residue in simulation (Section 4.3)

1: , 2: =simulation cases (Section 4.3)
T=gas-phase temperature (K)
Tp=biomass particle temperature (K)
Twall=wall temperature (Section 4.3, K)
t=time (s)
tend=integration time to calculate the errors for the targets (s)
tp=thickness of biomass particles (Section 4.3, m)
; =set of targets used in DRGEP
⟨ ⟩D; =average value of target ; in the PaSR using the
detailed model
⟨ ⟩R; =average value of target ; in the PaSR using the
reduced model

sp; =trapped species that are released from biomass during
devolatilization

*sp; =trapped species that remain inside biomass after
devolatilization
Y=species mass fractions
Ychar=char yield (Section 4.3)
ΔT=temperature difference between biomass particle surface
and the surrounding gas (K)
Δt=PaSR simulation time step (s)
ϵ; =a posteriori error on target ;

Φ=composition of the mixture in the PaSR
Φi=composition of the ith particle in the PaSR
Φm=composition of the mixture after the mixing fractional
step in the PaSR
Φstr=composition of the PaSR inflow stream
λf=gas thermal conductivity (W/m.K)
τmix=particle mixing time scale in the PaSR (s)
τpair=particle pairing time scale in the PaSR (s)
τres=residence time in the PaSR (s)
σ=Stefan−Boltzmann constant
ωc=char emissivity
ωp=biomass particle emissivity
ωw=wood emissivity
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