
Numerical investigation and modeling of reacting gas-solid flows in
the presence of clusters

Jesse Capecelatro n, Perrine Pepiot, Olivier Desjardins
Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14853, USA

H I G H L I G H T S

! Clusters delay the conversion process by up to 85% compared to a homogeneous flow.
! The PDF of particle-phase volume fraction resembles a lognormal distribution.
! A 0D model that solves the temporal evolution of reactant mass fraction is derived.
! A presumed-shape PDF models the effects of clusters on reactant mass fraction.
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a b s t r a c t

This work presents a volume-filtered formulation for describing chemically reacting flows in the
presence of solid catalytic particles. The equations are discretized in a Eulerian–Lagrangian framework
and applied to flows of isothermal, heterogeneously reacting chemical species in fully developed three-
dimensional risers. The aim of this study is to identify and quantify the influence of particle clusters on
heterogenous reactions. The Archimedes number, Ar, is varied from 500 to 12,500, and the Damköhler
number, Da, from 0.1 to 10. To assess the multiphase dynamic effects on the chemistry, conversion times
from the three-dimensional simulations are compared to a zero-dimensional model that solves for the
temporal evolution of the species mass fraction and ignores all spatial variations. The conversion process
associated with the three-dimensional simulations is shown to be significantly longer compared to the
zero-dimensional solution, with an increasing effect for larger values of Da. The discrepancies can be
fully attributed to the presence of clusters, which are accounted for in the zero-order equations by an
additional term that contains the covariance between species mass fraction and particle volume fraction
fluctuations, which needs to be modeled. To this purpose, contributions to the fluctuating chemical
source term are evaluated from the three-dimensional data and discussed, and a presumed-shape
probability distribution function (PDF) approach is investigated. This PDF approach models the
fluctuating chemical source term by a product of a beta distribution for the species mass fraction and
a lognormal distribution for the particle concentration, and yields a mean species solution that agrees
very well with the three-dimensional results for the range of Ar and Da considered in this study.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Reactive gas-solid flows play a major role in a wide variety of
engineering devices. Within the energy sector, such flows are used
in fluidized bed reactors due to their low pressure drops, uniform
temperature distribution, and high efficiency in mixing. Since the
1970s, circulating fluidized bed (CFB) reactors have been used in a
range of technical processes, including fluid catalytic cracking (FCC)

(Avidan et al., 1990; Avidan, 1996), gasification and combustion
of coal (Brereton, 1996; Lee, 1996; Basu, 2006), and more recently
thermochemical conversion of biomass (Li et al., 2004; Sanz and
Corella, 2006). Currently, catalytic-like processes (e.g., FCC) remain
the primary conversion technique within the petrochemical indus-
try (Speight, 2014), and is the focus of this study. A common feature
of all reactive gas-solid systems is the complex processes occurring
at the particle scale, referred heretofore as microscale processes.
These include heat and mass transfer between the two phases,
adsorption on and desorption from the solid surfaces, and the actual
chemical reaction between the adsorbed gas and the solid (Szekely
et al., 1976). If the variations in particle concentration becomes
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significant, the multiphase dynamics might impact the microscale
processes significantly and therefore cannot be ignored. Within the
riser of a CFB reactor, solid particles are pneumatically conveyed
by a carrier gas phase, characterized by velocities much higher than
minimum fluidization. The high flow rates encountered in risers
often lead to the spontaneous generation of densely packed
particles, referred to as clusters. Clusters have been observed to
reduce mixing and interaction of particles with the transport gas
(Shaffer et al., 2013), and therefore may inhibit the chemical
conversion process, potentially lowering operating efficiencies sig-
nificantly. Simultaneously accounting for both the microscale pro-
cesses and particle dynamics poses significant challenges in
developing predictive models. As a result, detailed studies demon-
strating the quantitative impact of particle clustering on chemical
processes occurring in such flows are severely limited.

Due to the importance of reactive gas-solid flows in industrial
units and the large impact clusters have on operation efficiency,
there exists great need for improved models that account for the
presence of clusters during the design process. To this end, we
wish to perform high fidelity simulations with the ultimate goal of
extracting information that can be used to develop a predictive
reduced-order model. In general, simulating chemical processes in
fluidized bed reactors requires a chemical kinetic model to
describe the various reactions taking place and a framework for
solving gas-solid flows. In the context of catalytic cracking in
risers, most work found in the literature models the solid phase as
a continuous Eulerian field, greatly reducing the computational
cost as individual particles do not need to be tracked (see e.g.,
Theologos and Markatos, 1993; Derouin et al., 1997; Treece et al.,
1999; Gupta and Subba Rao, 2001; Das et al., ; Souza et al., 2006;
Wu et al., 2008; Prasad Vegendla et al., 2012). In the limit where
the flow is highly collisional and assumed to be nearly at
equilibrium, the particle density function is close to Maxwellian
and a Chapman–Enskog expansion can be used to derive a
two-fluid model (TFM) using ensemble or volume averaging
(Gidaspow, 1994; Zhang and Prosperetti, 1994; Peirano and
Leckner, 1998). However, due to the strong coupling between the
gas phase and solid particles, the solid concentration becomes
highly segregated and the velocity distribution deviates far from
equilibrium. Agrawal et al. (2001) demonstrated that global
statistics obtained from Eulerian–Eulerian simulations of non-
reactive riser reactors were strongly dependent on the mesh size
but became mesh-independent when mesh size is of the order of a
few particle diameters. As a result, accurate predictions obtained
from TFM are potentially still excessively expensive for such flows.
In a recent study, Ozel et al. (2013) employed TFM at various
resolutions to obtain mesh-independent results in non-reactive
CFB reactors. It was shown that various sub-grid terms have to
be modeled in order to account for the unresolved clustering
dynamics.

Eulerian–Lagrangian strategies provide an alternative frame-
work that typically relies on simpler closures, where individual
particle trajectories are solved using Newton's laws of motion, and
models are required for interphase exchange and particle colli-
sions. Because of the added computational expense of tracking
individual particles, Eulerian–Lagrangian methods coupled with
a chemistry model have only recently been applied in three dimen-
sions (Bruchmüller et al., 2012; Li et al., 2013), but are typically
limited to two-dimensional flows with a relatively small number
of particles (e.g., Fletcher et al., 2000; Papadikis et al., 2009;
Oevermann et al., 2009; Rabinovich et al., 2010; Wu et al., 2010).
It has been demonstrated in recent work that two-dimensional
simulations are only capable of capturing qualitative features
of particle clustering in non-reactive flows, while a fully three-
dimensional description is required to accurately capture the
quantitative flow behavior (Capecelatro et al., 2014a; Li et al., 2014).

In particular, it was shown in our previous work that three-
dimensional Eulerian–Lagrangian simulations are capable of accurately
reproducing key cluster characteristics, including fall velocity, mean
cluster concentration, and concentration fluctuations in risers
(Capecelatro et al., 2014a).

The objective of this study is to characterize and quantify the
influence of particle clusters on heterogenous reactions in systems
that are applicable to a wide range of industrial systems. Fully
developed three-dimensional risers are simulated via a Eulerian–
Lagrangian approach, where heterogeneous reactions between the
solid particles and the carrier gas phase take the form of source
terms that are functions of the local solid concentration. The
particles are represented as rigid spheres of diameter dp that are
significantly denser than the surrounding fluid, and heat transfer
at the particle surface is neglected. In Section 2, we present
a volume-filtered formalism for describing heterogenous reactions
between individually tracked solid particles and the carrier gas
phase. Statistics from the fully developed, three-dimensional risers
are presented in Section 3. In Section 4, results from the three-
dimensional simulations are compared to a zero-dimensional
model that solves for the temporal evolution of the average
chemical species mass fraction and neglects all spatial variations.
Due to non-linearities in the scalar transport equation, the zeroth-
order model contains a term involving the covariance between
species mass fraction and particle volume fraction fluctuations.
This term accounts for the effects on the chemical processes of the
inhomogeneities (i.e., clusters) present in the flow and needs to be
modeled. A transport equation for the fluctuating chemical source
term is derived and the various contributions are presented and
discussed. Finally, a presumed-shape PDF model is proposed for
closure of the fluctuating chemical source term and its validity
is evaluated.

2. Volume filtered formalism for chemically reacting flows

2.1. Transport of reactive scalars

The transport of mass fraction 0o Ŷr1 of a chemical reactant
can be fully described by

∂ρ̂f Ŷ
∂t

þ∇ # ρ̂ f Ŷ ûf

! "
¼∇ # ρ̂ f D̂∇Ŷ

! "
; ð1Þ

where the notation ^ð#Þ denotes a pointwise (i.e., microscale)
property of the fluid phase, t is time, ρ̂f is the fluid density, û f is
the fluid velocity, and D̂ is the diffusion coefficient. Note that
because only heterogeneous reactions are considered, Eq. (1) does
not contain a source term for gas-phase reactions. Instead,
adsorption and desorption that occur during the chemical reaction
are represented as flux boundary conditions at the particle surface.
In order to formulate a tractable system of equations that does not
require resolving the flow at the particle scale, a separation of
length scales must be established. To achieve this, a volume
filtering kernel G is introduced, such that the local mean value A
of any microscale quantity Â is given by

εf Aðx; tÞ ¼
Z

Vf

Âðy; tÞGðjx'yÞ dy; ð2Þ

where εf is the fluid-phase volume fraction, y is the location of the
pointwise quantity Â, and x is the local coordinate system of the
volume-filtered variables. Applying the volume filter to Eq. (1)
yields

∂
∂t

εfρf Y
! "

þ∇ # εfρfuf Y
! "

¼ εf∇ # ρfD∇Y
! "

'∇ # RY þ _ω; ð3Þ
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where ρf, Y, uf , and D are the volume filtered fluid-phase
quantities. A full description of the mathematical derivation can
be found in our previous work (Capecelatro and Desjardins, 2013).

In Eq. (3), RY is the subfilter scalar flux, similar to the subgrid
scalar flux that appears for example in large-eddy simulations
(LES) of turbulent combustion, but in this case the unresolved
fluctuations may arise from interactions with particles due for
example to wakes and interparticle collisions, as opposed to
unresolved turbulence fluctuations generated by large-scale
energy-containing eddies. Proper closure for this term requires
further investigation and is beyond the scope of this work.
However, because the chemical reactants do not feed back to the
gas-solid flow, and because the majority of fluid velocity fluctua-
tions are assumed to be generated by clusters of particles that are
sufficiently resolved by the computational mesh, RY is neglected in
this study.

Volume filtering the last term in Eq. (1) and assuming that
diffusion occurs uniformly over the surface of each particle yields
additional subfilter surface contributions. Such contributions
include a subfilter diffusion flux that accounts for enhanced or
reduced scalar mixing due to the presence of particles. Modeling
multicomponent diffusion aspects in fluidized beds is challenging
and often neglected in practical studies (Derksen, 2014). Recent
work conducting particle-resolved DNS have observed that scalar
spreading increases with decreasing solids volume fraction, and
increases with increasing particle Reynolds number (Derksen,
2008, 2014), though detailed models that capture these effects
are non-existent. However, with sufficient resolution, Eulerian–
Lagrangian methods should be adequate in capturing the majority
of the diffusion process. The subfiltered surface contributions also
account for the heterogeneous reactions that need to be modeled.
In order to mimic a catalytic-like process, the chemical reaction
between the solid particles and carrier gas phase take the form of
a source term in Eq. (3), and the depletion of species mass fraction
occurs at a rate _ω given by

_ω ¼ 'εfρf Ykεp=εp;0; ð4Þ

where εp;0 ¼ 0:634 is the random close-packing limit for mono-
disperse spherical particles (Scott and Kilgour, 1969), and k is
a coefficient that controls the rate of reaction.

2.2. Gas phase description

The volume-filtered continuity equation for a variable density,
low Mach number flow is given by

∂
∂t

εfρf

! "
þ∇ # ðεfρfuf Þ ¼ 0; ð5Þ

and the gas-phase momentum equation is given by

∂
∂t

εfρfuf

! "
þ∇ # εfρfufuf

! "

¼∇ # τ'Ruð Þþεfρf g'F interþFmfr; ð6Þ

where g is the gravity vector, F inter is the interphase exchange
term, which will be described in detail in Section 2.4, and Fmfr is
a source term to maintain a constant mass flow rate for statistically
stationary flows. In Eq. (6), the filtered stress tensor, τ, is expressed
as

τ ¼ 'pIþμ ∇uf þ∇uT
f '

2
3

∇ # uf
# $

I
% &

þRμ; ð7Þ

where p and μ are the fluid pressure and viscosity, respectively,
and I is the identity tensor. A full description of the mathematical
derivation can be found in our previous work (Capecelatro and
Desjardins, 2013).

To account for the enhanced dissipation in the gas phase due
to the presence of particles, an effective viscosity model is
implemented, given by

Rμ ( μn½∇uf þ∇uT
f '

2
3 ð∇ # uf ÞI*; ð8Þ

where μn was derived by Gibilaro et al. (2007) for fluidized beds as

μn ¼ μ ε'2:8
f '1

! "
: ð9Þ

As a result of filtering the non-linear convective term in the
pointwise Navier–Stokes equation, a subfilter flux similar to the
classical Reynolds stress term, Ru, arises in Eq. (6). The isotropic
components of Ru are absorbed into a modified mean pressure
while the anisotropic part is modeled by an eddy viscosity model,
given by

Ru ( μt ½∇uf þ∇uT
f '

2
3 ð∇ # uf ÞI*; ð10Þ

where μt is similar to a turbulent viscosity, computed from
a dynamic Smagorinsky model (Germano et al., 1991; Lilly, 1992)
based on Lagrangian averaging (Meneveau et al., 1996). Note that
the dynamic Smagorinsky model does not account for the pre-
sence of particles. Instead, μn is employed to account for any
turbulence modulation generated at the scale of an individual
particle, while the majority of the unsteady motion in the carrier-
phase turbulence is assumed to be generated by clusters of
particles with typical length scales that are sufficiently resolved
by the computational mesh. We have observed in previous studies
that both the effective viscosity and turbulent viscosity contribute
very little to the total viscosity in moderately dilute gas-solid
flows, and the majority of fluid-phase turbulent kinetic energy is
produced by resolved wakes past clusters (Capecelatro et al.,
2014a). A detailed study on cluster-induced turbulence in a non-
reactive homogeneous riser can be found in our previous work
(Capecelatro et al., 2014b).

2.3. Catalytic particle description

The solid phase is treated in a Lagrangian framework, where
individual particle trajectories are solved using Newton's second
law of motion. For each particle, its position xp, velocity up, and
angular velocity ωp are solved using a second-order Runge–Kutta
scheme. The equations of motion for the particles are given by

dxp
dt

¼ up; ð11Þ

mp
dup

dt
¼ f interp þFcol

p þmpg; ð12Þ

and

Ip
dωp

dt
¼ ∑

jap

dp
2
n+ f colt;j-p; ð13Þ

where mp ¼ πρpd
3
p=6 is the mass of particle p and Ip ¼mpd

2
p=10 is

the moment of inertia of the particle. In Eq. (12), f interp is the force
particle p experiences from the carrier fluid, and Fcol

p is the
collisional force that particle p experiences with adjacent particles
and the walls. Particle rotation is assumed to be only a function of
the tangential component of particle collisions f colt , and aids in the
contribution of tangential friction during contact. Collisions are
handled via a soft-sphere approach based on the combination of a
nonlinear Hertzian spring model combined with a dampening
model for the normal component f coln (Cundall and Strack, 1979),
and Coulomb friction law is applied for the tangential component
f colt . The model parameters are functions of the coefficient of
restitution 0oeo1, and a collision time that is a function of the
simulation time step. To properly resolve the collisions without
requiring an excessively small timestep, particles are restricted to

J. Capecelatro et al. / Chemical Engineering Science 122 (2015) 403–415 405



move no more than one-tenth of their diameter per timestep, and
the collision time is set to 15 times the simulation timestep. Once
each individual collision force is computed, the full collision force
that particle p experiences can be expressed as a sum of collisions
with all other particles j undergoing collision with p, i.e.,

Fcol
p ¼ ∑

jap
f coln;j-pþ f colt;j-p

! "
: ð14Þ

2.4. Interphase coupling

Coupling between the gas phase and solid particles appears in
the form of the volume fraction εf , and interphase exchange term
F inter defined by Eq. (16). Because the solid particles act as catalysts
in the depletion of the chemical reactants, an accurate representa-
tion of the particle information on the Eulerian grid is crucial for
predicting conversion rates. The particle-phase volume fraction
and momentum exchange term can be expressed as

εp ¼ 1'εf ( ∑
Np

p ¼ 1
G x' xpjÞVp;

''# ð15Þ

and

F inter ( ∑
Np

p ¼ 1
G x' xpjÞf

inter
p ;

'''
!

ð16Þ

where f interp is given by

f interp ( Vp∇ # τþ f dragp þFmfr: ð17Þ

Details on the formulation can be found in Capecelatro and
Desjardins (2013). The first term on the right-hand side of
Eq. (16) represents contributions from the resolved fluid stresses
that each particle experiences, and the second term accounts for
the subfiltered stresses in the form of drag that relies on the gas-
phase velocity and volume fraction. For statistically stationary
flows, the forcing term Fmfr acts as an effective pressure gradient
on the particles. The gas-phase variables are interpolated to the
location of the particle via a second order trilinear interpolation
scheme and are used in the computation of the drag force by

f dragp

mp
¼
εf
τp
ðuf 'upÞFðεf ;RepÞ; ð18Þ

where τp ¼ ρpd
2
p=ð18μÞ is the particle response time derived from

Stokes flow and the particle Reynolds number is given by

Rep ¼
εfρf juf 'upjdp

μ
: ð19Þ

F is the dimensionless drag force coefficient of Tenneti et al. (2011),
expressed as

Fðεf ;RepÞ ¼
1þ0:15Re0:687p

ε2f
þεf F1 εf

# $
þεf F2 εf ;Rep

# $
; ð20Þ

where

F1 εf
# $

¼
5:81εp
ε3f

þ
0:48ε1=3p

ε4f
;

and

F2 εf ;Rep
# $

¼ ε3pRep 0:95þ
0:61ε3p
ε2f

 !

:

To extrapolate the particle data back to the Eulerian mesh in
a computationally efficient manner that is consistent with the
mathematical formulation, Eqs. (15) and (16) are solved in two
steps. First, the particle data is transferred to the nearest neigh-
boring cells via linear extrapolation. The data is then diffused such

that the final width of the filtering kernel is independent of the
mesh size. In this work, G is taken to be Gaussian with a
characteristic length scale δf ¼ 8dp, defined as the full width at
half the height of the kernel. To keep the cost low and ensure
unconditional stability, the diffusion process is solved in a single
implicit step by utilizing the approximate factorization scheme of
Briley and McDonald (1977).

2.5. Discretization of the volume-filtered equations

The volume-filtered variable density equations are implemented
in the framework of NGA (Desjardins et al., 2008), a high-order, fully
conservative CFD code tailored for turbulent flow computations. The
Navier–Stokes equations are solved on a staggered grid with second
order spatial accuracy for both the convective and viscous terms,
and the second order accurate semi-implicit Crank–Nicolson
scheme of Pierce (2001) is implemented for time advancement. In
this approach, the particles are advanced first, the scalar field is
updated, and the momentum equations are then advanced. Scalar
transport is solved via a bounded quadratic-upwind interpolative
convective BQUICK scheme (Herrmann et al., 2006). Details on the
mass, momentum, and energy conserving finite difference scheme
are available in Desjardins et al. (2008).

This study considers gas-solid suspensions in vertical risers,
where the reactor geometry is modeled as a vertical pipe with
periodic boundary conditions imposed in the vertical (gravity-
aligned) direction. To account for the cylindrical geometry on a
cartesian mesh, a conservative immersed boundary (IB) method is
employed. The IB method is based on a cut-cell formulation that
requires rescaling of the convective and viscous fluxes in these
cells, and exhibits formally second-order accuracy (Meyer et al.,
2010; Desjardins et al., 2014). Details on the coupling of the
Lagrangian particles with the IB method is provided in
Capecelatro and Desjardins (2013).

3. Heterogeneous reactions in a three-dimensional riser

3.1. System description

In this study, reactive gas-solid flows take place in a vertical
(i.e., gravity-aligned) cylindrical pipe with an aspect ratio of 10, on
a cartesian mesh with 800+82+82 cells and a uniform grid
spacing of Δx( 1:8dp. The density ratio and reactor diameter D to
particle diameter ratio are respectively given by ρp=ρf ¼ 2500 and
D=dp ¼ 150. The particles are inelastic with a coefficient of restitu-
tion e¼0.9 and coefficient of friction μf ¼ 0:1, initially uniformly
distributed on a cartesian lattice with a mean concentration
〈εp〉¼ 0:015, corresponding to 728,232 particles. In this work,
angled brackets denote a spatial average, i.e., 〈ð#Þ〉¼ ð1=VÞ

R
V

ð#Þ dV , with V being the volume of the system under consideration.
Periodic boundary conditions are enforced in the streamwise
direction and the momentum source term Fmfr is adjusted
dynamically in Eq. (6) to prevent the development of a net mass
flow rate in the gas phase due to momentum coupling with the
particles.

Once the flow reaches a statistically stationary state, a chemical
reactant is introduced with a mass fraction of unity throughout
and a Schmidt number Sc¼ μ=ðρfDÞ ¼ 0:7. The simulations are
then run until 99% of the reactant is consumed. Note that both ρf
and D remain constant throughout the duration of the simula-
tions, and the chemistry does not modify the flow. The reaction
rate k is varied in each simulation in order to emphasize the
relative importance of the two-phase dynamics contributing to
the chemical conversion process. These effects are quantified by
the Damköhler number, Da, which describes the ratio of the flow
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time scale to reaction time scale. Because the net mass flow rate is
forced to zero, an appropriate timescale for the fluid is not obvious.
We have shown in a previous numerical study (Capecelatro et al.,
2014a) that clusters simulated in vertical risers fall with a constant
velocity predicted by the experimental correlation of Noymer and
Glicksman (2000), given by

Uc ¼ 0:75

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ρp

ρf
gdp

s
: ð21Þ

Using Eq. (21) as the characteristic flow velocity and the reactor
diameter D as the characteristic length scale for the flow, the

Damköhler number can be formulated as

Da¼
〈εp〉kD
εp;0Uc

; ð22Þ

where εp;0=ð〈εp〉kÞ is the characteristic reaction time scale.
A total of 9 simulations are conducted by varying both Da and

the Archimedes number Ar, which characterizes the entrainment
of the gas phase by the particles (Goossens, 1998), defined as

Ar¼
ρp'ρf

! "
ρf d

3
pg

μ2 : ð23Þ

A list of parameters for the simulations conducted in this work is
shown in Table 1. The Archimedes number is varied by varying the
gas-phase viscosity while keeping all other parameters constant.
As a consequence, the particle response time τp, and thus the
terminal velocity vt ¼ τpg increase with Ar. Because the cluster fall
velocity is independent of Ar, Uc remains constant for each case.
Furthermore, the Schmidt number is kept constant for each case,
and therefore the species diffusivity decreases with increasing Ar.

Table 1
Simulation cases and their corresponding non-dimensional parameters.

Name A1 A2 A3 B1 B2 B3 C1 C2 C3

Ar 500 500 500 2500 2500 2500 12,500 12,500 12,500
Da 0.1 1.0 10.0 0.1 1.0 10.0 0.1 1.0 10.0

Fig. 1. Radial profiles extracted from Ar500 (thick solid line), Ar2500 (thick dashed line), and Ar12500 (thin solid line).
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3.2. Gas-solid statistics

Simulation results are gathered after the initial transient is
complete and the flow reaches a statistically stationary state.
Time-averaged radial profiles of the multiphase statistics are
shown in Fig. 1, where the single-prime notation denotes a
fluctuation about the averaged quantity. It can be observed that
the volume fraction statistics do not vary significantly with Ar.
As seen in Fig. 1(a), the average solid concentration in the
near-wall region is more than twice as large in comparison with
the concentration in the center of the riser. Fluctuations in solid
volume fraction along the radius of the pipe are given in Fig. 1(b),
showing the greatest variation at the wall. The mean fluid velocity
and fluctuations in fluid velocity increase monotonically with
increasing Ar, as shown in Fig. 1(c) and (d). From the slip velocity
profiles in Fig. 1(e) and (f), it is observed that the clusters in the
near-wall region entrain the fluid, leading to a reduction in drag
between the phases, and explaining the strong downward flow of
gas closest to the walls. A more detailed analysis on the two-phase

dynamics in risers can be found in our previous work (Capecelatro
et al., 2014a).

3.3. Temporal evolution of reactant mass fraction in three
dimensions

After the initial transient is complete, the chemical reactant is
introduced to the flow with a mass fraction of unity. Fig. 2 shows
two-dimensional planes colored by the spatial distribution of
species mass fraction as a function of time from case B2. Due to
the strong segregation in particle concentration, the mass fraction
decays rapidly in dense clusters, while maximum values of Y
persist upstream of clusters and in the reactor center. The
temporal evolution of the corresponding species mass fraction is
shown in Fig. 3. After tUc=D( 6, 99% of the overall chemical
reactant has been depleted. The instantaneous minimum and
maximum values of Y reveal the variation in local depletion
times, with 99% consumption of reactant mass fraction occurring

Fig. 2. Two-dimensional planes showing the spatial distribution of species mass fraction as a function of time for case B2. Iso-contours of εp ¼ 3〈εp〉. (a) tUc=D¼ 0:0,
(b) tUc=D¼ 0:5, (c) tUc=D¼ 1:0, (d) tUc=D¼ 1:5, (e) tUc=D¼ 2:0, (f) tUc=D¼ 2:5, and (g) tUc=D¼ 3:0.
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between tUc=D( 0:2 in some regions of the flow and approxi-
mately tUc=D( 100 in other regions.

4. Reduced-order modeling

4.1. Influence of clusters on the conversion time

Particle clustering is inherently a three-dimensional process
characterized by strong lateral segregation in wall-bounded flows.
To assess the effects of clustering on the catalytic-like conversion
process, results from the three-dimensional simulations are com-
pared to a zero-dimensional model that solves for the temporal
evolution of the volume-averaged mass fraction and ignores all
spatial variations. Applying the spatial averaging operator
〈ð#Þ〉¼ ð1=Vf Þ

R
Vf
ð#Þ dVf on the three-dimensional scalar transport,

Eq. (3), yields

∂eY
∂t

þ
keεp

εp;0
eY ¼ '

k
εp;0

gε″pY
″ ; ð24Þ

where we have introduced the phase-average notation fð#Þ ¼
〈ð#Þεf 〉=〈εf 〉 analogous to the Favre average in variable density flows,
with double primes denoting a fluctuation about the volume
fraction-weighted quantity, i.e. ð#Þ″¼ ð#Þ'fð#Þ. The unclosed term
gε″pY″ arises from averaging the chemical source term and accounts
for fluctuations due to clustering. The homogeneous solution to
Eq. (24) is given by

eY ðtÞ ¼ e' t=τ ; ð25Þ

where τ¼ εp;0=ðkeεpÞ is the mean reaction timescale. The solution
provided in Eq. (25) yields the temporal evolution of mass fraction
given a homogeneous distribution of particles, and thus its
deviation from the three-dimensional simulation is explicitly due
to the presence of clusters.

The three-dimensional simulations listed in Table 1 are com-
pared to the zero-dimensional solution given by Eq. (24) using the
corresponding mean reaction timescale τ from each case. To assess
the performance of the conversion process, the time required to
deplete 99% of the reactants predicted by the three-dimensional
simulation, t3D99 , is compared with the depletion time predicted by
the zero-dimensional solution, t0D99 . Fig. 4 shows the effect of Da
and Ar on the conversion times for each case. The deviation from
the homogeneous solution is observed to increase with increasing
Damköhler number, with a maximum of t3D99=t

0D
99 ( 1:83 for Da¼10.

At large values of Da, the reaction is relatively fast compared to the
multiphase flow timescale, too fast for convection and diffusion to
aid in the mixing process. Meanwhile, the Archimedes number is
observed to have a small impact on the conversion rate.

The discrepancies between the simulation predictions and the
homogeneous solutions are accounted for by the fluctuating

chemical source term, gε″pY″. In Fig. 5, the temporal evolution of
the phase-average mass fraction predicted by case A3 (maximum
t3Dres=t

0D
res) is compared to the corresponding zero-dimensional

solutions with and without the fluctuating chemical source term,

revealing that an accurate prediction of gε″pY″ is critical when
modeling reactive gas-solid flows that exhibit strong spatial
segregation in particle concentration. The fluctuating source terms
extracted from each simulation are shown in Fig. 6. For each case,
gε″pY″ peaks at approximately t=τ( 1, corresponding to the time of
maximum decay rate. Due to the non-passive and stochastic
nature of the particle-phase volume fraction and its strong

coupling with the species mass fraction, modeling gε″pY″ requires
careful attention.

4.2. Transport of the fluctuating chemical source term

A transport equation for the fluctuating chemical source can be
derived by subtracting Eq. (24) from Eq. (3) and multiplying
through by ε″p, yielding the following differential equation

∂
∂t
gε″pY″þ

kfεp
εp;0

gε″pY″ ¼ gYuf # ∇ε″p þD gε″p∇2Y″

'
k
εp;0

fε″2p eY þ gε″2p Y″
! "

þ
g

Y″
∂ε″p
∂t

: ð26Þ

It is important to recall that the phase-average quantities involve
volume averaging over the entire domain, and thus mean gradi-
ents are not retained. The first two terms on the right-hand side of

Fig. 4. Time until 99% of reactants are depleted, normalized by the value predicted
by homogeneous solution Eq. (25) with Ar¼500 (circles) Ar¼2500 (diamonds),
and Ar¼12,500 (squares).

Fig. 3. Temporal evolution of the species mass fraction for case B2. Phase-average
mass fraction (thick solid line), minimum mass fraction (thin solid line), and
maximum mass fraction (thin dashed line).

Fig. 5. Temporal evolution of the species mass fraction for case A3. Phase-average
mass fraction (thick solid line), homogeneous solution Eq. (25) (thick dashed line),
and zero-dimensional model including the fluctuating source term Eq. (24) (circles).
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this equation represent sources due to convection and diffusion,
respectively. The third and fourth terms account for fluctuations in
particle-phase volume fraction. The last term is a correlation
between mass fraction fluctuations and the rate of change of
volume fraction fluctuations. The relative contributions from each
term in Eq. (26) are provided in Fig. 7. For each case, the diffusive
flux is observed to have a negligible contribution, while all other
terms contribute to the fluctuating chemical source term in
various degrees. When the chemical reaction is sufficiently fast
(i.e., Da¼10), convection is seen to have very little influence, but
when reactions take place over longer timescales (i.e., smaller Da),
the relative importance of convection is higher. Similarly, gY″∂ε″p=∂t
decreases with increasing Da, but with a positive contribution and
thus this term inhibits the overall conversion rate. For each case,
'k=εp;0eY fε″2p has the greatest contribution to the fluctuating
chemical source term, and is observed to promote the conversion
of species mass fraction, while 'k=εp;0 gε″2p Y″ also has a significant
impact for each case, but reduces the overall conversion rate.

We have demonstrated in our previous work that the empirical
model of Issangya et al. (2000) provides reasonable agreement
with the volume fraction variance for a wide range of Ar
(Capecelatro et al., 2014a). This model can be written in terms of
the phase-average concentration as

fε″2p ¼ 1:584eεp 0:55'eεp
# $) *2

: ð27Þ

This expression provides closure for the most significant contribu-
tion to the fluctuating chemical source term in Eq. (26). Note that
a more accurate model for the volume fraction variance based on
first-principles, as opposed to an empirical correlation, will be
useful in the context of large-eddy simulations, and will require
careful analysis of a canonical fluid-particle flow such as the case
of fully developed cluster-induced turbulence recently introduced
elsewhere (Capecelatro et al., 2014b). From Fig. 7, it is observed

that gε″2p Y″ varies like

gε″2p Y″ ( C gε″pY″ fε″2p
! "1=2

; ð28Þ

where C is a modeling constant. In Fig. 8, Eqs. (27) and (28) are
compared to results from each simulation case, showing overall
good agreement. Meanwhile, for small values of Da, contributions
from convection and the rate of change in volume fraction
fluctuations in the transport of the fluctuating chemical source
term become important. Providing models for all of the relevant
terms (i.e., 'k=εp;0eεp gε″pY″, gYuf #∇ε″p , 'k=εp;0eY fε″2p , 'k=εp;0 gε″2p Y″,
and gY″∂ε″p=∂t) becomes challenging, and alternative modeling
approaches should be explored.

4.3. Presumed shape PDF approach

The fluctuating chemical source term can be calculated pro-
vided the density field is known, i.e.,

gε″pY″ ¼
Z Z

ðεp'eεpÞðY' eY Þef εp;Y
# $

dεp dY ; ð29Þ

where ef ðεp;YÞ is the phase-average joint-PDF, given by

ef εp;Y
# $

¼
〈εf jεp;Y〉

〈εf 〉
f εp;Y
# $

; ð30Þ

with f εp;Y
# $

the joint-PDF of particle volume fraction and species
mass fraction. The temporal evolution of the phase-average joint-
PDF is given in Fig. 9 for case B2. Because the gas-solid flow is at
steady state and there is no feedback from the chemical species,
the mean volume fraction remains constant throughout the dura-
tion of the simulation. Meanwhile, the phase-average species mass
fraction is strongly coupled with both particle concentration
and time. Making use of Bayes' theorem, the joint-PDF can be

Fig. 6. Fluctuating chemical source term extracted from the three-dimensional simulations with Da¼ 0:1 (thick solid line), Da¼ 1:0 (thick dashed line), and Da¼ 10 (thin
solid line): (a) Ar¼500; (b) Ar¼2500; and (c) Ar¼12,500.

Fig. 7. Components of the fluctuating chemical source term Eq. (26) for Ar¼2500. 'k=εp;0eεp gε″pY″ (blue circles), gYuf #∇ε″p (pink triangles), D gε″p∇2Y″ (yellow stars),
'k=εp;0eY fε″2p (green squares), 'k=εp;0 gε″2p Y″ (red diamonds), and gY″∂ε″p=∂t (blue crosses): (a) Case B1; (b) Case B2; and (c) Case B3. (For interpretation of the references to color
in this figure caption, the reader is referred to the web version of this article.)
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rewritten as

ef εp;Y
# $

¼ ef Y jεp
# $

eg εp
# $

; ð31Þ

where the conditional PDF ef ðY jεpÞ and volume fraction PDF eg εp
# $

may be modeled based on a presumed distribution.

4.3.1. Modeling the volume fraction PDF
We have demonstrated in our previous work that the PDF of

particle-phase volume fraction in CFB risers closely resembles
a lognormal distribution for a wide range of Ar (Capecelatro et al.,
2014a). Using the instantaneous phase-average concentration eεp
and making use of Eq. (27), the volume fraction PDF can be
modeled as

egðεpÞ ¼
1

εpσln
ffiffiffiffiffiffi
2π

p exp '
ln εp'μln
# $2

2σ2
ln

" #

; ð32Þ

where μln ¼ ln eε2
p=

fε″2p þeε2
p

! "1=2
% &

and σln ¼ ln 1þfε″2p =eεp

! "h i1=2
.

A comparison between egðεpÞ extracted from the simulations with
the corresponding lognormal distribution using the model of
Issangya et al. (2000) for the variance is given in Fig. 10, showing
overall very good agreement.

4.3.2. Modeling the conditional PDF
In non-premixed combustion, the beta PDF has been used in

numerous studies to model the scalar mass fraction in both
constant and variable-density flows with much success (see e.g.,
Cook and Riley, 1994; Jiménez et al., 1997; Wall et al., 2000; Tong,
2001; Pierce and Moin, 2004). Recent studies suggest that the beta
distribution is also capable of capturing mixing of active scalars
in variable-density, buoyancy-driven (or other pressure-gradient-
driven) turbulence (Bakosi and Ristorcelli, 2010). However, it
remains unclear whether such an approach can be applied to
reactive particle-laden flows.

Assuming the species mass fraction is well represented by a
beta distribution, the conditional PDF can be written in terms of
two parameters a and b as

ef Yjεp
# $

¼
ðY jεpÞa'1ð1'YjεpÞb'1

Bða; bÞ
; ð33Þ

which is bounded by 0rYr1. In Eq. (33), Bða; bÞ is a normal-
ization constant to ensure ef Y jεp

# $
integrates to unity, given by the

beta function

Bða; bÞ ¼
Z 1

0
ya'1ð1'yÞb'1 dy: ð34Þ

Fig. 8. Models for selected components of the fluctuating chemical source term (lines) against simulation results (symbols). 'k=εp;0eY fε″2p (green squares), variance modeled
using Eq. (27) (green line), 'k=εp;0 gε″2p Y″ (red diamonds), Eq. (28) with C¼3 (red dashed-line): (a) Case A1; (b) Case A2; (c) Case A3; (d) Case B1; (e) Case B2; (f) Case B3; (g) Case
C1; (h) Case C2; and (i) Case C3. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this article.)

J. Capecelatro et al. / Chemical Engineering Science 122 (2015) 403–415 411



The two parameters a and b are related to the conditional
moments by

a¼ eY jεp
eY jεpð1' eY jεpÞ

gY ″2 jεp
'1

2

4

3

5; ð35Þ

and

b¼ ð1' eY jεpÞa: ð36Þ

Using the conditional moments extracted from case B2, Fig. 11
demonstrates the capability of the beta distribution to reproduce
the conditional PDF, showing overall excellent agreement. Due to
the conditional dependence on the volume fraction, the para-
meters a and b must be known for every value of εp at each time t.
In the similar situation of non-premixed combustion problems,
conditional moment closure (CMC) methods have been used to
derive and model equations for the conditional moments of
reactive scalars with encouraging success (Klimenko and Bilger,

1999). Modeling eY jεp and
gY ″2 jεp with CMC methods would require

knowledge of the fluid velocity and scalar dissipation conditioned
on the particle-phase volume fraction and is beyond the scope of
this work.

4.3.3. Validation of the presumed PDF strategy
The fluctuating chemical source term that appears in the zero-

dimensional scalar transport, Eq. (24), is closed via Eq. (29), where
the phase-average joint-PDF is modeled as a product of a beta
distribution for the conditional mass fraction and a lognormal
distribution for the particle-phase volume fraction. The volume
fraction variance is modeled using the correlation by Issangya
et al. (2000), and the conditional moments are obtained from the
three-dimensional simulations. Fig. 12 shows the modeled phase-
average joint-PDF as a function of time for case B2. The model
shows excellent agreement with the joint-PDF predicted by the
simulation in Fig. 9. Finally, Fig. 13 shows that the PDF model
provides an excellent representation of the volume fraction-mass
fraction correlation for the range of Da considered in this study.

5. Conclusions

The turbulent and multiphase nature of riser reactors will often
lead to a strong segregation of the solid phase in the form of dense
clusters. It is hypothesized that the non-homogeneity in particle
concentration will affect the conversion process, rendering opti-
mal operation difficult to achieve since a much higher catalyst
loading will be necessary to obtain the desired level of conversion.
The aim of this study was to investigate the effect of clusters on
the conversion process and develop a reduced-order model that
takes these effects into account. The choice of chemical model was
driven by the objectives of simplicity and generality, such that the
insights gained from this analysis remains applicable to a wide
range of gas-solid catalytic processes. In order to formulate a

Fig. 9. Instantaneous phase-average joint-PDFs of particle concentration and species mass fraction for case B2: (a) t=τ¼ 0:1; (b) t=τ¼ 2:0; (c) t=τ¼ 4:0; and (d) t=τ¼ 6:0.

Fig. 10. Instantaneous phase-average PDF of particle concentration. Ar¼500 (solid
line), Ar¼2500 (dashed line), Ar¼12,500 (thin solid line), and the corresponding
lognormal distribution (Eq. (32)) using the correlation provided by Issangya et al.,
2000 for modeling the variance (circles).
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tractable system of equations that accounts for key physical
processes of the flow, a volume-filtering operator was applied to
the microscale equations of motion. The equations were discre-
tized in an Eulerian–Lagrangian framework and applied to flows of
isothermal, linearly reacting chemical species in fully developed
three-dimensional risers. The Archimedes number, Ar, was varied
by a factor of 25, 500rArr12;500, and the Damköhler number,

Da, by a factor of 100, 0:1rDar10. Key findings from this work
include:

! The PDF of particle-phase volume fraction in fully developed
risers closely resembles a lognormal distribution with a con-
centration variance modeled using the correlation of Issangya
et al. (2000).

Fig. 11. Instantaneous conditional PDFs of species mass fraction from case B1 (solid line) compared to their corresponding beta distributions (symbols) as a function of εp.
(a) εp ¼ 0:001 (circles), εp ¼ :025 (triangles), εp ¼ 0:05 (diamonds), εp ¼ 0:075 (squares). (b) εp ¼ 0:001 (circles), εp ¼ 0:01 (triangles), εp ¼ 0:018 (diamonds), εp ¼ 0:025
(squares). (c) εp ¼ 0:001 (circles), εp ¼ 0:003 (triangles), εp ¼ 0:006 (diamonds), εp ¼ 0:01 (squares). (d) εp ¼ 0:001 (circles), εp ¼ 0:003 (triangles), εp ¼ 0:043 (diamonds), and
εp ¼ 0:006 (squares).

Fig. 12. Model of the instantaneous phase-average joint-PDFs for case B2: (a) t=τ¼ 0:1; (b) t=τ¼ 2:0; (c) t=τ¼ 4:0; and (d) t=τ¼ 6:0.
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! To assess the impact of clusters on the heterogeneous reaction,
a zero-dimensional model that solves for the temporal evolu-
tion of the phase-average mass fraction was derived. The
correlation between fluctuating mass fraction and volume
fraction entirely accounts for the discrepancy between the
zero-dimensional model and three-dimensional results.

! Clusters are found to delay the conversion process by up to 85%
compared to the homogeneous solution, with greater impact at
higher Da.

! A transport equation for the fluctuating chemical source term
was derived, and the correlation of Issangya et al. (2000) was
used to model the two largest contributions, showing overall
very good agreement.

! An initial attempt at providing closure for the fluctuating
chemical source term in the zero-dimensional model was
obtained by applying a presumed-shape PDF model, where
the phase-average joint-PDF is given by a product of a beta
distribution for the species mass fraction and a lognormal
distribution for the particle concentration. The model yields
excellent results for the range of Ar and Da considered in
this study.

In practice, riser reactors used in catalytic conversion contain
both a population of deactivated catalysts that are trapped in
clusters as well as freshly re-injected particles. In future studies, it
would be necessary to account for deactivation of catalytic
particles that have been exposed to chemical reactants for a
sufficiently long period of time, which is likely to further reduce
the conversion efficiency of the reactor, and further amplify the
role played by clusters.
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