
Numerical characterization and modeling of particle clustering
in wall-bounded vertical risers

Jesse Capecelatro ⇑, Perrine Pepiot, Olivier Desjardins
Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14853, USA

h i g h l i g h t s

! Cluster descent velocities and solid packing match experimental correlations.
! Solid distribution is unaffected by the Archimedes number and follows a lognormal law.
! The standard deviation of volume fraction depends only on the mean concentration.
! The characteristic cluster length scale is limited by the diameter of the reactor.
! 2D simulations grossly over-predict the volume fraction and velocity fluctuations.
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a b s t r a c t

This paper aims at investigating the capability of numerical models to accurately capture the physical
characteristics of particle clustering in vertical risers. Within the energy sector, particle clustering in ver-
tical risers of circulating fluidized bed reactors are known to play a key role in the multiphase dynamics
as well as secondary processes such as catalytic conversion and heat transfer. Recent experiments suggest
that particle clustering is most significant in the fully developed flow region of the riser, hence this study
focuses on this region. To explore such flows, a high-fidelity large-eddy simulation framework is com-
bined with a Lagrangian particle tracking solver to simulate statistically stationary gravity-driven risers
in vertical pipes for a large range of Archimedes numbers. The walls of the reactor are modeled using a
conservative immersed boundary scheme integrated with the Lagrangian particle tracking framework. A
structure tracking algorithm akin to particle image velocimetry is used to accumulate statistics on indi-
vidual clusters. Cluster descent velocities display excellent agreement with experimental measurements
for the range of flow conditions considered. Predicted volume fraction fluctuations and mean solid con-
centration within the clusters also match experimental correlations. The probability distribution function
of solid concentration and radial distribution function provide insight on the degree of clustering and the
characteristic cluster length scale. The degree of particle clustering is found to be independent of the
Archimedes number, and models for the volume fraction distribution are discussed. Statistics on the solid
concentration and phase velocities for two- and three-dimensional configurations are compared, and the
ramifications of simulating risers in two dimensions are discussed.

Published by Elsevier B.V.

1. Introduction

Particle-laden flows in vertical pipes play a crucial role in many
industrial processes. Within the energy sector, such flows are used
in fluidized bed reactors due to their low pressure drops, uniform
temperature distribution, and high efficiency in mixing. Since the
1970s, circulating fluidized bed (CFB) reactors have been used in
a range of technical processes, including fluid catalytic cracking

(FCC) [1,2], gasification and combustion of coal [3–5], and more re-
cently thermochemical conversion of biomass [6,7]. CFB reactors
were developed to improve the performance of traditional fluid-
ized beds by using higher flow rates to move the bed material
resulting in a significant increase in the contact efficiency between
the phases. This increased kinetic energy within risers of CFB reac-
tors causes the flow to become unsteady with large particle con-
centration fluctuations. Local regions of densely packed particles,
referred to as clusters, develop in the flow and tend to fall at the
walls of the riser, while dilute suspensions of particles rise in the
central region. Sustained volume fraction and velocity fluctuations
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caused by the clusters result in the production of fluid-phase tur-
bulent kinetic energy, which then exists even in the absence of
mean shear [8]. Meanwhile, under specific conditions, clusters
have been observed to reduce mixing and interaction of particles
with the transport gas [9], and therefore may inhibit reaction rates
and heat transfer in industrial units, potentially lowering operating
efficiencies significantly. Without the ability to predict and opti-
mize reactor performance, large-scale commercialization of these
systems remains severely restricted.

Because the solid phase is opaque and highly unsteady, experi-
mental studies on particle clustering in risers have proven to be an
arduous task. Nonetheless, many correlations of cluster character-
istics have been derived from experimental data. Noymer and
Glicksman [10] compiled numerous measurements of cluster fall
velocities from within the literature, observing that although the
flow conditions vary significantly, as well as the reactor geometries
and particle parameters, the measured velocities were typically
close to 1.0 m/s. Previous investigations on risers indicate that
clusters tend to fall within 100 lm of the wall [11], placing them
within the hydrodynamic boundary layer. Additionally, particles
tend to reduce the gas-phase velocity gradients [12], implying that
clusters falling near the walls are generally unaffected by the
superficial gas velocity. Noymer and Glicksman [10] developed a
model to match the observed trends for the measured cluster fall
velocities, given by

ucl ¼ 0:75

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qp

qf
gdp

s
; ð1Þ

where qp and qf are the particle and fluid densities, respectively, g
is the gravitational acceleration, and dp is the particle diameter.
Note that the cluster velocity ucl is independent of the gas-phase
viscosity and mass flow rate. Recent studies by Chew et al.
[13–16] used a fiber optic probe and high-speed video camera to
characterize clustering of monodisperse and polydisperse particles
in a riser of a pilot-scale CFB. It was found that the riser axial posi-
tion greatly influences the radial profiles of cluster duration and fre-
quency, but has negligible effect on cluster appearance probability.
The particle size distribution and particle properties were shown to
have comparatively minor effects on cluster characteristics. Two re-
cent studies [17,18] used high-speed video and wavelet decomposi-
tion analysis of backscattered optical data to show that clusters
were much more prevalent in the fully developed flow region of
the riser. It was concluded that a better understanding of particle
clustering and their interactions with the gas phase is clearly
needed to improve existing models found in the literature.

With increasing computational resources and advancements in
numerical methods, many researchers have turned to computa-
tional fluid dynamics (CFD) to gain further insight on particle clus-
tering in risers. There exists a spectrum of modeling approaches for
simulating coupled fluid-particle flows, each with its own advanta-
ges and disadvantages. In recent years, particle-resolved direct
numerical simulations (PR-DNS) of three-dimensional gas-solid

flows with O 104
" #

particles have become feasible. A recent review

article on PR-DNS development can be found in [19]. To the best of
the authors’ knowledge, state-of-the-art PR-DNS is currently un-
able to resolve the necessary length scales required in simulating
freely-evolving clusters in risers due to excessive computational
cost. However, recent efforts have focused on model development
for lower cost simulation techniques. For example, Xu and Subr-
amaniam [20] performed PR-DNS of a turbulent flow past uniform
and clustered configurations of fixed particle assemblies using a
discrete-time, direct-forcing, immersed boundary method. The
fluid-phase turbulence was found to be significantly anisotropic
due to the fluid-particle interaction, and the level of turbulent

kinetic energy in the fluid phase was always found to be greater
in the clustered case compared to the uniform particle configura-
tion. Another recent study [21] conducted lattice Boltzmann simu-
lations of a single fixed cluster under a wide range of volume
fractions and particle Reynolds numbers. The PR-DNS results re-
vealed that particles arranged in a cluster configuration exhibited
considerably lower drag than randomly arranged particles under
the same flow conditions, with more significant reduction at lower
particle Reynolds numbers.

In order to investigate realistic riser configurations in a tracta-
ble manner, Eulerian–Eulerian (EE) and Eulerian–Lagrangian (EL)
methods have been used in numerous studies within the literature
with various levels of success. EE representations solve the gas
phase and solid particles on a common Eulerian grid, greatly reduc-
ing the computational cost as individual particles do not need to be
tracked. In the limit where the flow is highly collisional and as-
sumed to be nearly at equilibrium, the particle density function
is close to Maxwellian and a Chapman–Enskog expansion can be
used to derive a two-fluid model (TFM) using ensemble or volume
averaging [22–24]. TFM has been used in a large number of studies
to simulate two-dimensional (e.g., [25–31]) and three-dimensional
(e.g., [32–35]) risers. Most of this work extracts mean profiles of
the hydrodynamic variables, typically the solid volume fraction,
pressure drop, and velocity of each phase. Chalermsinsuwan
et al. [36] compared particle cluster diameter and concentration
in risers using two-dimensional TFM. The calculated values were
comparable to empirical correlations. Agrawal et al. [32] demon-
strated that global statistics were strongly dependent on the mesh
size but became mesh-independent when mesh size was of the or-
der of a few particle diameters. Furthermore, it was shown that
clusters are not properly captured unless sufficient resolution is
applied. Ozel et al. [33] employed TFM in a recent work at various
resolutions to obtain mesh-independent results in periodic CFB ris-
ers. It was shown that various sub-grid terms have to be modeled
in order to account for the unresolved clusters.

EL strategies provide an alternative framework that typically re-
lies on simpler closures compared to EE, where individual particle
trajectories are solved using Newton’s laws of motion, and models
are required for interphase exchange and particle collisions. Particle
clustering in two-dimensional risers using the EL method can be
found in a large number of studies from previous years (e.g., [37–
42]). In these studies, large-eddy simulation (LES) is often used to
solve the gas-phase turbulence, and particle collisions are typically
modeled stochastically by means of the direct simulation Monte
Carlo (DSMC) method. Liu and Lu [42] used a DSMC-EL approach
to study cluster dynamics in a two-dimensional riser. A cluster
identification method was used to obtain the solid concentration
and velocities of individual clusters. In order to compare their
results with experimental data, the computed two-
dimensional voidage used in the drag calculation was modeled as
three-dimensional using the correction described in [43]. Mean
cluster descent velocities as a function of mean solid concentration
showed reasonable agreement with experimental correlations. The
mean solid concentration of near wall clusters was shown to
increase with the increase of cross-sectional averaged solid concen-
tration. The simulated results, however, consistently under-pre-
dicted the experimental findings. In a response to this study by
Liu and Lu [42], Berrouk and Wu [44] discussed the severe short-
comings of the phase coupling scheme used in the context of
two-dimensional EL methods. It was shown that schemes to
correct the two-dimensional void fraction under-predict the
momentum source term, which results in a much lower prediction
of the pressure drop and erroneous prediction of the minimum
fluidization velocity. It was concluded that since the pressure gradi-
ent force plays a crucial role in the two-phase dynamics, two-
dimensional EL methods may systematically provide an inaccurate
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analysis of the gas-particle flow behavior in the CFB riser. Due to the
computational cost of EL methods, three-dimensional simulations
of CFB risers are much less common in the literature. Vreman
et al. [45] performed LES of two-way and four-way coupled gas-
solid flows in a three-dimensional vertical channel. Mean and
root-mean-square (RMS) velocity profiles were computed, revealing
a strong modulation of the gas-phase turbulence due to the pres-
ence of a large number of interacting particles. It was found that
the coupling between the particles and fluid is mainly responsible
for the reduction in the thickness of the boundary layer and a strong
increase in the skin-friction compared to an unladen channel.

In this work, the EL approach is used to simulate statistically
stationary three-dimensional gas-solid flows in vertical pipes.
Inelastic particle collisions are accounted for explicitly. Special care
is given when exchanging data between the phases to allow for
mesh size to particle diameter ratios close to unity, enabling finer
meshes for capturing fluid turbulence. A conservative immersed
boundary method based on cut-cells is employed in order to model
the reactor geometry on a Cartesian mesh [46]. This simulation
strategy has been validated against several laboratory-scale
experiments of dense particle flows [47,48], and is extended to
moderately-dilute particle flows in this work. An overview of the
governing equations and numerical implementation is given in
Section 2. Section 3 presents the simulation parameters and results
are discussed in Section 4. Velocity profiles for each phase and
volume fraction statistics are compared for a large range of
Archimedes numbers. A numerical algorithm akin to particle image
velocimetry [49,50] is used to identify individual clusters and track
them in time. Cluster characteristics, including descent velocities
and local concentration fluctuations are computed and compared
to results from experimental data. The degree of particle clustering
is measured by computing the probability distribution function
(PDF) of solid concentration and radial distribution function.
Models for the PDF are proposed. This paper concludes with a
discussion on two-dimensional simulations of CFB risers,
describing numerical and physical issues associated with restrict-
ing the dimensionality of moderately-dilute four-way coupled
flows.

2. Computational approach

2.1. Gas phase description

The flow of solid particles suspended in a turbulent carrier
phase is solved in a Eulerian–Lagrangian framework, where parti-
cles are treated as discrete entities of finite size and mass, and
the gas phase is solved on a background Eulerian mesh. In order
to solve the gas-phase equations of motion without resolving the
flow around each individual particle, a volume-filtering operator
is applied to the Navier–Stokes equations, which in turn replaces
the point variables (fluid velocity, pressure, etc.) by smoother, lo-
cally filtered fields. In order to capture a significant portion of
the small-scale features of the flow, while enabling the use of
classical models for microscale processes such as particle drag
and mixture viscosity, the filter length scale df should satisfy
dp % df % L, where L is a characteristic size of the mesoscale flow
features. The filtering process leads to a volume fraction term, ef ,
which denotes the local volume occupied by the gas phase. Follow-
ing the work of Anderson and Jackson [51], the volume filtered
continuity equation for the gas phase is given by

@

@t
ef qf

" #
þr ' ðef qf uf Þ ¼ 0; ð2Þ

where uf is the volume filtered fluid velocity. The momentum equa-
tion is given by

@

@t
ef qf uf

" #
þr ' ef qf uf ( uf

" #

¼ r ' s) Ruð Þ þ ef qf g ) F inter þ Fmfr; ð3Þ

where F inter is the interphase exchange term, which will be de-
scribed in detail in Section 2.3, and Fmfr is a source term to maintain
a constant mass flow rate for statistically stationary flows. In Eq. 3,
the filtered stress tensor, s, is expressed as

s ¼ )pI þ l ruf þruT
f )

2
3
r ' uf
$ %

I

& '
þ Rl; ð4Þ

where the filtered hydrodynamic pressure and dynamic viscosity
are given by p and l, respectively, and I is the identity tensor. Rl
is introduced as a result of filtering the velocity gradients in the
point wise stress tensor, and requires closure. In this work, an effec-
tive viscosity model is used for closure and accounts for enhanced
dissipation by the particles, given by

Rl * l+ ruf þruT
f )

2
3
r ' uf
$ %

I

& '
; ð5Þ

where l+ was derived by Gibilaro et al. [52] for fluidized beds, and is
given by

l+ ¼ l e)2:8
f ) 1

" #
: ð6Þ

In Eq. 3, Ru is a sub-filter Reynolds stress term closed via a turbulent
viscosity model, given by

Ru * lt ruf þruT
f )

2
3
r ' uf
$ %

I

& '
; ð7Þ

where lt is the turbulent viscosity, computed from a dynamic
Smagorinsky model [53,54] based on Lagrangian averaging [55].
Note that the dynamic Smagorinsky model does not account for
the presence of particles. Instead, mf is employed to account for
the enhanced dissipation due to agitation in the gas phase at the
particle scale, while the majority of the unsteady motion in the car-
rier-phase turbulence is assumed to be generated by clusters with
typical length scales that are sufficiently resolved by the computa-
tional mesh. The last two terms in Eq. 3 represent the momentum
transfer between phases and a source term to maintain a constant
mass flow rate for homogeneous flows, respectively.

2.2. Solid phase description

Particle trajectories are solved using Newton’s second law of
motion for each particle p, given by

mp
dup

dt
¼ f inter

p þ Fcol
p þmpg; ð8Þ

where up is the velocity of particle p and mp ¼ pqpd3
p=6 is the mass

of particle p. In Eq. (8), f inter
p is the interphase exchange term that

will be made explicit in Section 2.3, and Fcol
p is the collisional force

that particle p experiences with adjacent particles and the walls. Fcol
p

can be solved in a stochastic or deterministic manner. Stochastic
collision models are computationally more efficient in comparison
to deterministic methods because information from neighboring
particles is not required. Instead, these methods rely on the gener-
ation of a fictitious collision partner with a given size and velocity
[56]. Because these models assume a behavior for the particle and
fluid velocity fluctuations (e.g., Gaussian), accurate predictions of
non-equilibrium flows are compromised. However, deterministic
methods (e.g., [57,58]) rely on the physical properties of each indi-
vidual particle, and therefore non-trivial velocity distributions, such
as trajectory crossings that are common in moderately-dilute flows,
pose no additional challenges. In this work, collisions are modeled
using the soft-sphere approach, a deterministic method originally
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proposed by Cundall and Strack [57]. When two particles come into
contact, a repulsive force f col

n is created as

f col
n;b!a ¼

)kdabnab ) guab;n if dab < ra þ rb þ kð Þ;
0 else;

(
ð9Þ

where ra and rb are the radii of particles a and b, respectively, dab is
the distance between the center of the particles, dab is the overlap
between the particles, and nab is the unit normal vector from parti-
cle a to particle b. A sketch of the collision process is given in Fig. 1.
The normal relative velocity between particles a and b is given by

uab;n ¼ ua ) ubð Þ ' nabð Þnab: ð10Þ

The spring stiffness and damping parameter are given by k and
g, respectively. A model for the damping parameter uses a
coefficient of restitution 0 < e < 1 and an effective mass
mab ¼ 1=ma þ 1=mbð Þ)1 such that

g ¼ )2 ln e

ffiffiffiffiffiffiffiffiffiffiffi
mabk

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ ln eð Þ2

q : ð11Þ

The spring stiffness is related to the collision time, scol, accord-
ing to

k ¼ mab=s2
col p2 þ ðln eÞ2
" #

: ð12Þ

To properly resolve the collisions without requiring an exces-
sively small timestep, scol is set to 15 times the simulation time
step for all simulations presented in this work. In Eq. 9, k is set
to a small number that allows for collisions to initiate before par-
ticles are in contact, which is adjusted dynamically such that slow
moving particles can reach the close packing limit and high-speed
collisions remain robust [47]. Collisions with walls are handled by
treating the walls as particles with infinite mass and zero radius.
To account for friction between particles and thus particle rotation,
the static friction model is employed for the tangential component
of the collision force, given by

f col
t;b!a ¼ )lf f col

n;b!a

)))
)))tab: ð13Þ

The relative tangential velocity, uab;t , is defined as

uab;t ¼ uab ) uab;n; ð14Þ

and is used to create the tangential unit vector tab by

tab ¼
uab;t

uab;t
)) )) : ð15Þ

Once each individual collision force is computed, the full colli-
sion force that particle p experiences can be expressed as a sum
of collisions with all other particles j undergoing collision with p,
i.e.,

Fcol
p ¼

X

j–p

f col
n;j!p þ f col

t;j!p

" #
: ð16Þ

Finally, the angular velocity of particle p; xp, can be con-
structed using Eq. (13) by

Ip
dxp

dt
¼
X

j

dp

2
n, f col

t;j!p; ð17Þ

where Ip is the moment of inertia of the particle, given for a sphere
by

Ip ¼
mpd2

p

10
: ð18Þ

2.3. Interphase exchange

The gas phase is coupled with the particles through the volume
fraction ef and the interphase exchange term approximated by

F inter ¼
Xnp

p¼1

g x) xp
)) ))$ %

f inter
p ; ð19Þ

where np is the total number of particles, xp is the position of the pth
particle, x is the location in the gas phase, g is the volume filtering
kernel, and f inter

p is approximated by

f inter
p * Vpr ' sþ f drag

p : ð20Þ

Details on the formulation can be found in [47]. The expression
above represents the local effect of the gas phase on each particle,
where Vp is the volume of the pth particle and f drag

p is the drag
force, given by

f drag
p

mp
¼

ef

sp
ðuf ) upÞFðef ;RepÞ; ð21Þ

where sp ¼ qpd2
p=ð18lÞ is the particle response time derived from

Stokes flow. F is the dimensionless drag force coefficient of Tenneti
et al. [59], and is given by

Fðef ;RepÞ ¼
1þ 0:15Re0:687

p

e2
f

þ ef F1 ef
$ %
þ ef F2 ef ;Rep

$ %
; ð22Þ

where the particle Reynolds number is

Rep ¼
ef qf uf ) up

)) ))dp

l : ð23Þ

The remaining two terms are given by

F1 ef
$ %
¼ 5:81ep

e3
f

þ
0:48e1=3

p

e4
f

;

and

F2 ef ; Rep
$ %

¼ e3
pRep 0:95þ

0:61e3
p

e2
f

 !
;

where ep ¼ ef is the particle-phase volume fraction. In the present
formulation, f inter

p contains resolved contributions from fluid stres-
ses at the surface of the particle, while the drag term accounts forFig. 1. Soft-sphere representation of two particles undergoing collision.
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the sub-filtered terms. PR-DNS studies suggest that a stochastic
contribution to the fluid-particle force arises due to the effect of
the neighboring particles [60]. Future research efforts should be
carried out to assess the capability of EL methods in capturing this
effect.

2.4. Numerical implementation

To study the multiphase dynamics in vertical gravity-driven
flows, the previous equations are implemented in the framework
of NGA [61], a high-order fully conservative CFD code tailored for
turbulent flow computations. The Navier–Stokes equations are
solved on a staggered grid with second order spatial accuracy for
both the convective and viscous terms, and the second order accu-
rate semi-implicit Crank–Nicolson scheme of [62] is implemented
for time advancement. The particles are distributed among the pro-
cessors based on the underlying domain decomposition of the gas
phase. A second-order Runge–Kutta scheme is used for updating
each particle’s position, velocity, and angular velocity. Sub-
stepping is used to ensure stability when the particle response
time, sp, falls below the simulation timestep.

Coupling between the gas phase and solid particles appears in
the form of the volume fraction ef and the interphase exchange
term F inter, defined by Eq. (19). These terms are first computed at
the location of each particle, using information from the fluid,
and are then transferred to the Eulerian mesh. To interpolate the
gas-phase variables to the particle location, a second order trilinear
interpolation scheme is used. To send the particle data back to the
Eulerian mesh, the requirement dp % df % L must be satisfied. For
ratios of Dx=dp * 1, this would require looping through a large
number of cells for each particle, making this operation excessively
expensive. Instead, a two-step filtering process is implemented to
ensure a transfer of particle data to the Eulerian mesh in a compu-
tationally efficient manner that converges under mesh refinement.
This is accomplished by first transferring the particle data to the
cells immediately adjacent to its location using a Gaussian filter
with a characteristic filter width df ¼ Dx, where Dx is the grid spac-
ing. The data is then diffused such that the final width of the filter-
ing kernel after both operations have been applied is df ¼ 7dp.
Fig. 2(a) shows an example of the initial transfer of particle data

in one-dimension during the diffusion process, where r is the dis-
tance from the center of the particle. Note that the drag model Eq.
(21) requires the undisturbed flow field from the gas phase, and as
the mesh size to particle diameter ratio decreases, the accuracy of
the model diminishes. However, we assume that the accuracy
gained from the higher resolution of the flow field outweighs the
error in the gas-phase velocity used in the drag model, and
Dx * dp is often applied.

A conservative immersed boundary (IB) method is employed to
model the cylindrical pipe geometry without requiring a body-
fitted mesh. The IB method is based on a cut-cell formulation that
requires rescaling of the convective and viscous fluxes in these
cells [63,64,46], and is coupled to the Lagrangian particle solver
[47]. A proper treatment of the viscous fluxes at the walls requires
detailed information of the particle volume fraction, which is fil-
tered away during the interphase exchange process, potentially
introducing artificially high dissipation. We deal with this issue
by assuming that only a single point of contact is made with the
particle and wall, and therefore the molecular viscosity, which is
unaware of the presence of the particles, is used in place of the to-
tal viscosity. To transfer the particle data to the underlying mesh in
the near-wall region, particles are mirrored across the boundary to
enforce a Neumann boundary condition, as depicted in Fig. 2(b).
This is done in order to prevent any unphysical behavior of the vol-
ume fraction or momentum exchange term.

3. Configuration and simulation parameters

Moderately dilute flows of rigid spherical particles in vertical
pipes are considered in this work. The particles are inelastic with
a coefficient of restitution e ¼ 0:9 and coefficient of friction
lf ¼ 0:1, initially uniformly distributed on a Cartesian lattice with
a mean concentration hepi. In this work, angled brackets denote an
average in space and time. Periodic boundary conditions are en-
forced in the streamwise direction and the momentum source term
Fmfr is adjusted dynamically in Eq. 3 to prevent the development of
a net mass flow rate in the gas phase that results from momentum
coupling with particles settling under gravity. A sketch of the com-
putational domain is given in Fig. 3(a). The pipe has an aspect ratio
of 10, with a grid size 800, 82, 82, corresponding to Dx * 1:8dp.

Fig. 2. Filtering kernel during the interphase exchange process in one-dimension.
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The parameters of the computational domain are displayed in
Table 1. The analysis presented by Noymer and Glicksman [10]
suggests that the terminal velocity of a cluster, when non-dimen-
sionalized by the minimum fluidization velocity of the particles,
depends only on the Archimedes number, defined as

Ar ¼
qp ) qf

" #
qf d

3
pg

l2 : ð24Þ

From Eq. (1), the correlation for the cluster fall velocity normal-
ized by the minimum fluidization velocity of the particles is given
by

ucl

umf
¼ 1000ffiffiffiffiffiffi

Ar
p ; ð25Þ

where umf was derived by Grace [65] as

umf ¼ 0:00075
qpd2

pg
l : ð26Þ

Other critical dimensionless parameters of the flow include the
mean volumetric concentration of particles hepi, the pipe diameter
to particle diameter ratio D=dp, and the density ratio qp=qf . A list of
parameters for the simulations conducted in this work is shown in
Table 2. These parameters represent conditions commonly found
in CFB reactors. In each case, Ar is varied by varying the gas-phase
viscosity while keeping all other parameters constant. As a conse-
quence of modifying the viscosity, the particle response time sp,
and thus the terminal velocity v t ¼ spg, increases with Ar.
Fig. 3(b) shows the dependence of the terminal velocity on Ar for

the cases given in Table 2. Note that except for Ar250, each case
has identical properties except for the Archimedes number.
Ar250 considers a larger pipe diameter to particle diameter ratio
by keeping the number of particle approximately equal and reduc-
ing the particle diameter, thus reducing hepi.

4. Results and discussion

4.1. Riser statistics

In order to perform a quantitative analysis on particle cluster-
ing, a systematic criterion for identifying clusters must be estab-
lished. Due to the shallow gradient of volume fraction around
individual clusters, isolating coherent structures in the flow can
be challenging. Soong et al. [66] proposed three criteria for
identifying clusters. (1) The solid fraction in a cluster must be sig-
nificantly above the time-averaged solid fraction at the given local
position. (2) The perturbation in solid fraction caused by the
cluster must be greater than the random fluctuations in the
background of solid fraction variations. (3) This concentration per-
turbation should be sampled from a volume with a characteristic
length scale greater than one or two orders of particle diameter.
With these guidelines in consideration, Sharma et al. [67] proposed
that the local instantaneous solid volume fraction for a cluster
must be greater than the time-mean solid fraction by at least
two times the standard deviation. We adopt this criterion in this
work, such that

ep;crit ¼ hepiþ 2
ffiffiffiffiffiffiffiffiffi
he02p i

q
; ð27Þ

Fig. 3. Simulation configuration.

Table 1
Parameters used in the numerical simulations.

Parameter Units Value

Lx m 0.5
D m 0.05
Cells in x-direction – 800
Cells in y-direction – 82
Cells in z-direction – 82
Timestep ls 10
g m s)2 9.81

Table 2
Simulation cases and the corresponding non-dimensional parameters.

Name Ar D=dp hepi qp=qf np

Ar100 100 150 0.015 2500 728232
Ar250 250 320 0.0015 2500 730275
Ar500 500 150 0.015 2500 728232
Ar2500 2500 150 0.015 2500 728232
Ar12500 12500 150 0.015 2500 728232
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where e0p ¼ ep ) hepi is the fluctuation in particle volume fraction.
For each case, results are gathered after the initial transient is

complete and the flow reaches a statistically stationary state.
Instantaneous snapshots of the cases summarized in Table 2 are
shown in Fig. 4. Clusters are visualized by iso-surfaces of
ep ¼ ep;crit, with ep;crit being computed separately for each respective
case. It can be seen that clusters entrain the fluid as they fall at the
walls, resulting in upward gas jets in the center of the riser. This is
consistent with recent experimental observations of a CFB riser
with FCC catalyst particles [18]. Besides Ar250, which has a mean
volume fraction an order of magnitude smaller than the other
cases, the level of clustering in each flow does not appear to be sig-
nificantly affected by the range of Ar. In order to gain further in-
sight on the flow behavior, statistics are computed along the
radial profile of the riser. As shown in Fig. 5(a), the average solid
concentration in the near-wall region is more than twice as large
than in the center of the riser. Fluctuations in solid volume fraction
along the radius of the pipe are given in Fig. 5(b), showing the
greatest variation at the wall. Interestingly, although Ar varies by
more than two orders of magnitude in the simulations, the volume
fraction statistics are not significantly affected. The mean solid vol-
ume fraction decreases with increasing Ar at the wall of the riser,
but only slightly. Similarly, larger values of Ar display greater fluc-
tuations at the wall, but the differences are relatively small. As
would be expected, the mean fluid velocity and fluctuations in fluid
velocity increase monotonically with increasing Ar, as shown in
Fig. 5(c) and (d). From the slip velocity profiles in Fig. 5(e) and
(f), it is observed that the clusters in the near-wall region entrain
the fluid, leading to a reduction in drag between the phases,
explaining the strong downward flow of gas closest to the walls.

4.2. Cluster descent velocity

In this work, a band-growth algorithm was used to identify
coherent structures in the flow and extract velocity statistics on
individual clusters. The displacement of these identified structures
can be tracked in time in order to compute cluster velocities,
analogous to particle image velocimetry (PIV). The algorithm was
originally developed by Hermann [49] for tracking droplets during
primary atomization of a turbulent liquid jet, and was later used to
track bubbles in dense fluidized beds [50]. At each timestep, the
Eulerian solid volume fraction is computed from the Lagrangian
particles using the interphase exchange process described in
Section 2. The algorithm identifies grid cells when the condition
ep > ep;crit is met, then searches for neighboring cells that also meet
this criterion. Once all continuous structures are identified
throughout the computation domain, several key quantities are
computed by looping over the cells associated with each. This
includes the volume of the structure, the mean concentration
within the structure, and its center of mass. The principal axes
and principal moments of inertia of each structure are obtained
from an eigenvalue/eigenvector analysis and are used to construct
an equivalent ellipsoid with the same moments of inertia. An
example of the structure identification algorithm for Ar2500 is
given in Fig. 6. An instantaneous snapshot of particle position is
shown in Fig. 6(a), the corresponding iso-surface of ep ¼ ep;crit is
given in Fig. 6(b) and (c) shows the resulting ellipsoids in two-
dimensions. Many small isolated structures can be observed in
the flow using the definition (27) for identifying clusters. In order
to avoid contaminating cluster statistics with these very small
structures, a threshold is adopted such that identified clusters with

Fig. 4. Instantaneous snapshots at steady state of the simulations described in Table 2. Iso-surface of ep ¼ ep;crit (gray), color represents vertical fluid velocity. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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a volume less than 10 times the volume of an individual particle
are not considered.

An example of vertical cluster position, xcl, plotted against time
is displayed in Fig. 7. Two key observations can be made from the
figure. First, all clusters tend to fall at similar velocities. Second, the
slope of cluster position versus time is linear, indicating that
clusters do not accelerate as they fall. For all of the simulations
conducted, individual clusters were tracked over time and the

velocity of each was computed. As shown in Fig. 8, simulated clus-
ter velocities compare very well with Eq. (25), as well as the exper-
imental data compiled by Noymer and Glicksman [10]. Note that
one explanation for the the correlation of cluster fall velocity to
be independent of the inflow condition and fluid properties is that
clusters tend to fall within the hydrodynamic boundary layer [12].
Much greater resolution would be required to properly capture the
fluid boundary layer within the simulations, and thus the clusters
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Fig. 5. Mean statistics along the radius of the riser. Ar100 (thick solid line), Ar500 (thick dashed line), Ar2500 (thin solid line), Ar12500 (thin dashed line).
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are most likely affected by the gas phase, especially at higher Ar.
From Fig. 8, it can be seen that simulations run at large values of
Ar deviate the greatest from the experimental measurements, sug-
gesting that properly resolving the boundary layer in risers might

be necessary to most accurately capture cluster fall velocity. None-
theless, predictions from the LES yield very good agreement with
the wide range of experimental measurements.

4.3. Comparisons with experimental correlations on the distribution of
solid concentration

Numerous experimental studies on CFB risers exist in the liter-
ature, providing insight on the solid concentration distribution for
a wide range of operating conditions, riser dimensions, and particle
properties. Harris et al. [68] presented correlations for predicting
the solid concentration within clusters traveling in the near-wall
region of the riser. The correlation was developed from experimen-
tal data published in the literature on vertical risers ranging from
laboratory to industrial scale, and is given by

hecl j xi ¼
0:58hep j xi1:48

0:013þ hep j xi1:48 ; ð28Þ

where hecl j xi is the average concentration inside a cluster located
at a height x in the near-wall region of the flow, and hep j xi is the
average cross-sectional solid concentration at x. Some of these
experiments computed mean values of the cluster bulk density de-
fined from peaks in experimental probe data, while others reported
time averaged values of the near wall density. However, Harris et al.
[68] showed these two measures give similar values for the appar-
ent cluster solid concentration at the wall. In this work, hecl j xi is
computed using the criterion (27) based on the average cross-sec-
tional concentration hep j xi. As shown in Fig. 9, the simulation re-
sults show very good agreement with the experimental data and
Eq. (28). Although the correlation is only a function of the mean so-
lid concentration, a trend is observed in the results obtained from
the simulations, revealing a slope that increases with Ar.

Issangya et al. [69] compiled experimental data of solid concen-
tration fluctuations in FCC riser reactors and CFB combustors from
numerous studies in the literature. The standard deviation of par-
ticle concentration fluctuations was found to be correlated to the
time-mean local concentration by
ffiffiffiffiffiffi
e02p

q
¼ 1:584ep 0:55) ep

$ %
: ð29Þ

A comparison between the experimental measurements, Eq.
(29), and simulation results are given in Fig. 10, where
he02p j x; ri

1=2 is the average fluctuation about the local mean concen-
tration hep j x; ri. It can be seen that the fluctuations in particle

Fig. 6. Example of cluster identification for an instantaneous field of Ar2500.
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Fig. 7. Vertical cluster position as a function of time for 27 randomly selected
clusters (Ar2500).
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Fig. 8. Mean cluster velocity normalized by the minimum fluidization velocity. Eq.
(25) (solid line), experimental data points [10] (black, white, and gray symbols),
simulation results (blue circles). (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

J. Capecelatro et al. / Chemical Engineering Journal 245 (2014) 295–310 303



concentration increase with the local mean solid concentration up
to ep * 0:25, and then decrease for denser regions of the flow. Due
to the vertical periodic boundary condition enforced in the simula-
tions, a dense bed that typically exists at the bottom of CFB risers is
unable to develop, and therefore only comparisons with low solid
concentrations can be made. Simulation results show excellent
agreement against the experimental data for the range of volume
fractions considered, indicating that fluctuations in particle con-
centration is a function of the local averaged concentration and
independent of Ar.
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100

Fig. 9. Comparison between simulation results and experimental data for the mean
solid concentration of near-wall clusters. Black, gray, and white symbols represent
independent experimental studies [68]. Ar100 (dark blue circles), Ar250 (light blue
circles), Ar500 (green circles), Ar2500 (yellow circles), Ar12500 (red circles),
correlation Eq. (28) (line). (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
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correlation Eq. (29) (line). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 11. Probability density function of particle concentration. Poisson distribution
(dotted line), Ar100 (thick solid line), Ar500 (thick dashed line), Ar2500 (thin solid
line), Ar12500 (thin dashed line), ep ¼ ep;crit (thin dashed gray line).

Table 3
Comparison between simulation and model predictions of the standard deviation of
particle concentration fluctuations.

Name hepi
ffiffiffiffiffiffiffiffiffiffi
he02p i

q
Eq. (29) Eq. (31)

Ar100 0.015 0.0128 0.0127 0.0138
Ar250 0.0015 0.0013 0.0013 0.0014
Ar500 0.015 0.0126 0.0127 0.0138
Ar2500 0.015 0.0137 0.0127 0.0138
Ar12500 0.015 0.0135 0.0127 0.0138
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Fig. 12. Comparison between lognormal distribution (circles) and PDF of particle concentration from simulation results.
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4.4. Characterizing the degree of particle segregation

4.4.1. Probability density function of particle concentration
The degree of clustering for each case can be quantified by the

probability density function (PDF) of particle number density [70],
which is equivalent to the PDF of particle concentration. For a
homogeneous distribution of particles, devoid of any clustering,
the PDF is given by the discrete Poisson distribution [71,72], which
takes the form

fpðNÞ ¼
ðNÞNe)N

N!
; ð30Þ

where N is the observed number of particles in a given sample, and
N is the average particle number. The PDFs of particle concentration
for Ar100, Ar500, Ar2500, and Ar12500 are plotted against (30) in
Fig. 11. Compared to the Poisson distribution, the simulations exhi-
bit a higher probability of local regions empty of particles, as well as
local regions of higher solid fraction, as would be expected. Interest-
ingly, the degree of clustering is shown to be unaffected by the
Archimedes number, suggesting that a model for the PDF can be
useful for a wide range of operating conditions in CFB risers.

Wang et al. [73] performed an analysis on the fluctuation char-
acteristics of solid concentration in CFB risers to provide a means
to define the solid concentration inside clusters. Assuming the vol-
ume of a single particle is much smaller than the volume of a typ-
ical cluster, and the cluster diameter has minimal affect on the
concentration fluctuations, they proposed a model for the standard
deviation of volume fraction fluctuations as

re ¼ hepi
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sðhepi;0Þ

q
; ð31Þ

where Sðhepi; 0Þ ¼ ð1) hepiÞ4=ð1þ 4hepiþ 4hepi2 ) 4hepi3 þ hepi4Þ is
the static structure factor in the small wave vector limit [74]. This
result indicates that the standard deviation is only a function of
its mean value, which agrees with experimental findings
[75,76,69]. The study by Wang et al. [73] showed Eq. (31) to agree
well with experimental measurements for dilute and moderately
dilute flows, and only qualitative agreement was shown for
ep > 0:2. A comparison between the simulation predictions, the
model given by Eq. (31), and the correlation by Issangya et al.
[69] given by Eq. (29) are presented in Table 3. The model of Wang
et al. [73] slightly over-predicts the experimental correlation pro-
vided by Issangya et al. [69], though both are within 10% of the sim-
ulation results.

As seen in Fig. 11, the form of the PDF resembles a lognormal
distribution. Using the mean and standard deviation of particle
concentration extracted from the simulations, a lognormal distri-
bution fep can be constructed, given by

fep ¼
1

eprln
ffiffiffiffiffiffiffi
2p
p exp )

ln ep ) lln

$ %2

2r2
ln

" #

; ð32Þ

where lln ¼ ln hepi2= he02p iþ hepi2
" #1=2

& '
and rln ¼

ln 1þ he02p i=hepi
" #h i1=2

. The corresponding lognormal distribution

using the average standard deviation from the simulation results
is given in Fig. 12(a). Good agreement is seen in regions denser than
the mean concentration, but a discrepancy occurs in dilute regions.
Although lognormal distributions are known to describe the
behavior of many natural and technical processes, there is no
expectation that the particle concentration distribution will take
this form. However, it was observed that fully homogeneous risers
(CFB risers without walls) do indeed produce concentration distri-
butions that closely resemble a lognormal distribution. Fig. 12(b)
shows the PDF of particle concentration for a simulation with
parameters matching that of Ar2500 but without walls, compared

to a lognormal distribution using a standard deviation extracted
from the simulation. Overall, excellent agreement is observed. Here
we see that providing the lognormal distribution function with a
mean volume fraction and using Eq. (31) to compute the standard
deviation is a good model for the PDF of solid concentration, and
is valid for a wide range of Ar.

4.4.2. Radial distribution function
An important statistical measure of particle clustering is the ra-

dial distribution function (RDF), defined as the number of particle
pairs found at a given separation normalized by the expected num-
ber of pairs found in a homogeneous distribution [77]. The RDF has
been used in numerous studies to measure preferential concentra-
tion of aerosol particles suspended in isotropic turbulence (see e.g.,
[78–80]). In this work, we define the RDF as a function of vertical
separation xi between pairs of particles, and radial distance from
the riser center r, given by

gðxi; rÞ ¼
NiðrÞ=DViðrÞ

NðrÞ=VðrÞ
; ð33Þ

where NiðrÞ is the average number of particles found in an
elemental volume DViðrÞ at a vertical distance xi and radial dis-
tance r; VðrÞ is the total volume at a radial distance r, and NðrÞ
is the total number of particle pairs at r. Using this definition,
gðxi; rÞ ¼ 1 represents a homogeneous distribution of particles,
and gðxi; rÞ > 1 implies clustering. As shown in Fig. 13, gðxi; rÞ in-
creases with r, with the greatest level of clustering in the near-
wall region of the riser. It is also seen that gðxi; rÞ is reasonably
similar for the various Ar, and approaches unity at approximately
150dp. This implies a characteristic cluster length scale of approx-
imately the diameter of the reactor D. Several numerical studies
on risers in the literature have introduced a characteristic length
scale s2

pg to obtain an a-priori measure of the cluster size and
determine an appropriate domain length such that the results
are unaffected by the periodic boundary conditions [32,33]. The
simulations presented in this work have ratios of this characteris-
tic size to particle diameter ranging from s2

pg=dp * 770 to
s2

pg=dp * 96;000. Due to the presence of the walls, Fig. 13 suggests
the cluster size is limited by the characteristic reactor length scale,
and thus the simulations in this work are capable of capturing
several clusters along the height of the domain.
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Fig. 14. PDF of solid concentration for Ar2500. 3D simulation (solid line), 2D
simulation (dashed line).
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5. Effects of simulating risers in two-dimensions

Several key issues with simulating two-dimensional risers using
the EL approach were already discussed in Section 1. Namely, as
pointed out by Berrouk and Wu [44], corrections to the two-
dimensional void fraction will lead to an under-prediction of the
momentum source term, and therefore lead to a much lower
prediction of the pressure drop and thus an incorrect prediction
of the minimum fluidization velocity. However, besides the

numerical challenges associated with accurately modeling the flow
in two dimensions, it is likely that key physical phenomena are af-
fected by the loss in dimensionality as well. Therefore, before
attempting to simulate two-dimensional risers, regardless of the
simulation strategy (e.g., PR-DNS, EE, or EL methods), one should
be aware of potential ramifications.

A two-dimensional simulation was run with the domain config-
uration given in Table 1 but with 1 cell in the z-direction, and
parameters of Ar2500 from Table 2. Although the simulation is
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Fig. 15. Mean statistics along the radius of the riser for Ar2500. 3D (solid line), 2D (dashed line).
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two-dimensional, the particles are represented as spheres and the
depth of the domain was set equal to the mean inter-particle spac-
ing, i.e., Dz ¼ ½pd3

p=ð6hepiÞ.
1=3

. The higher degree of clustering in the
two-dimensional case can be observed in the comparison of solid
concentration distributions given in Fig. 14. There exists very few
locations in the three-dimensional flow devoid of particles, while
the two-dimensional simulation exhibits a high probability of find-
ing regions with negligible solid concentration. Mean radial pro-
files of solid concentration and phase velocities are provided in
Fig. 15, revealing greater fluctuations throughout the radius of
the pipe in two dimensions. Due to the higher concentration in
two dimensions seen in Fig. 15(a), the relative slip velocity be-
tween the two phases is smaller, as depicted in Fig. 15(e), leading
to a greater downward fluid velocity as shown in Fig. 15(c). These
results clearly show that restricting risers to two dimensions can
greatly enhance particle accumulation and fluctuations in volume
fraction and phase velocities. In particular, Fig. 15 shows a 225% in-
crease in volume fraction fluctuations and a 27% increase in fluid
velocity fluctuations in the near-wall region of the riser.

It is postulated that this increase in particle segregation is a re-
sult of restricting each particle to a single plane of motion. In par-
ticular, particles located in the path of a falling cluster will be much
less likely to escape in two dimensions, leading to an unphysical
accumulation of solid concentration. As depicted in Fig. 16, parti-
cles located below the cluster in the near-wall region will be
entrained, which would not necessarily be the case in three dimen-
sions. From Fig. 16(a), it is observed that in order for particles to
avoid the cluster, they must circumvent it laterally in y, leading
to the formation of an intense vortex downstream. Fig. 16(b) shows
trajectories of seven particles in the frame of reference of the same
cluster over a period of 35 ms. Due to the reduction in drag expe-
rienced by particles within the cluster, particles below the cluster
are forced to either move radially inward or become entrained. A
correlation between inward moving particles and denser regions
of the flow is given in Fig. 17, where vp is the particle radial veloc-
ity. This result shows that the observation of particles moving
towards the reactor center depicted in Fig. 16(b) is greatly en-
hanced in two dimensions.

6. Conclusions

This work demonstrates the capability of three-dimensional
Eulerian–Lagrangian methods to reproduce particle clustering with
physical characteristics. A large-eddy simulation framework was
coupled with a Euler–Lagrange methodology to simulate fully-
developed risers for a range of Archimedes numbers. Normal and
tangential particle collisions are handled deterministically via a
soft-sphere model. A two-step filtering approach is used during
the interphase exchange process, decoupling the mesh size to par-
ticle diameter ratio and providing a solution that converges under
mesh refinement. The pipe geometry was modeled using a conser-
vative immersed boundary method integrated with the Lagrangian
particle solver. Five cases were conducted to investigate the role of
the Archimedes number on the cluster dynamics. An analysis of the
numerical results led to the following findings:

! The degree of particle clustering is unaffected by the Archime-
des number, and the distributions of solid concentration agree
fairly well with a lognormal law, indicating a potential for
future modeling efforts.

Fig. 16. Particles in a section of a two-dimensional riser with Ar ¼ 2500.
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Fig. 17. Covariance of volume fraction and particle radial velocity along the radius
of the riser for Ar2500. 3D (solid line), 2D (dashed line).
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! The standard deviation of volume fraction fluctuations depend
only on the mean concentration, and is predicted within 10%
for the range of Archimedes numbers simulated in this study
using either the model proposed by Wang et al. [73] or the
experimental correlation given by Issangya et al. [69].
! The radial distribution function suggests that the characteristic

cluster length scale is limited by the diameter of the reactor.
This prediction is much smaller than that given by the charac-
teristic length scale for gravity-driven particle-laden flows s2

pg.
! Simulation results show excellent agreement with experimen-

tal correlations for the mean concentration within clusters, vol-
ume fraction fluctuations, and cluster descent velocities.
! In a CFB riser under statistically stationary conditions, clusters

were observed to fall at constant velocities.
! Simulating risers in two dimensions may lead to unphysical

accumulation of particles due to the restriction of particle
motion in a plane, resulting in gross over-predictions in volume
fraction and velocity fluctuations. The radial motion of particles
to avoid falling clusters is greatly enhanced in two dimensions.
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