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ABSTRACT: Flame synthesis represents a viable technique for large-scale production of titanium dioxide (TiO2) nanoparticles.
A key ingredient in the modeling of this process is the description of the chemical kinetics, which include Ti oxidation,
hydrocarbon fuel combustion, and chlorination. While detailed chemical mechanisms have been developed for predicting TiO2
nanoparticle properties by West et al. (e.g., Combust. Flame 2009, 156, 1764), their use in turbulent reacting flow simulations is
limited to very simple configurations or requires significant modeling assumptions to bring their computational cost down to an
acceptable level. In this work, a reduced kinetic scheme describing the oxidation of TiCl4 in a methane flame is derived from and
validated against the predictions of a detailed mechanism from the literature. The reduction procedure uses graph-based methods
for unimportant kinetic pathways elimination and quasi-steady-state species selection. Reduction targets are chosen in accordance
with previous modeling results that showed the importance of temperature and overall concentration of titanium-containing
species in both nucleation and surface growth rates. The resulting reduced scheme is thoroughly evaluated over a wide range of
conditions relevant to flame-based synthesis, and the capability of the reduced model to adequately capture the process dynamics
at a much lower computational cost is demonstrated.

■ INTRODUCTION
Flame-based synthesis is the preferred method for the industrial
level production of commercial grade metal−oxide nano-
particles and, hence, is the chosen technique for production of
titania (TiO2) nanoparticles. Titanium dioxide nanoparticles
are traditionally used as white pigments but have found use in
diverse areas like photocatalysis,1 reducing nitrogen oxide
emissions,2 catalyst supports,3 ultraviolet filtering materials,4

surface treatments like antifog coating,5 or cosmetics.6 Despite
the industrial importance of titanium dioxide and predicted rise
in market revenues,7 the chemistry and flow dynamics at the
core of TiO2 flame synthesis are not well understood, and
process optimization remains mostly empirical. The develop-
ment of predictive computational models offers an attractive
avenue to gain a better insight into the synthesis process and
devise strategies to achieve a tighter control over the resulting
particle properties.
In the flame synthesis of titania nanoparticles, the precursor

TiCl4 is oxidized to form TiO2. Typically, a hydrocarbon-based
fuel like methane (CH4) is used in the reactor to support the
flame and provide the high temperatures needed for titanium
(Ti) oxidation. To predict the properties of nanoparticles
synthesized in flame-based reactors, computational models have
to adequately capture the complexity of the corresponding
chemical processes, including the coupling between nano-
particles and hydrocarbon oxidation in the flame, the transition
from the gas-phase species to the particulate phase, and the
subsequent particle evolution (i.e., nucleation and surface
growth).8 Previous work9,10 has shown that the gas-phase
chemical mechanism used in the model can potentially play an
important role in determining the nucleation dynamics and
subsequent surface growth. Indeed, simulations that use the

detailed gas-phase kinetic mechanism developed by West et
al.11,12 yield significantly different results compared to one-step
models that forego Ti intermediates entirely. For example,
when coupled with a population balance approach containing
nucleation, growth, aggregation, and sintering terms, detailed
chemical models yield two different regimes:10 an initial
nucleation-dominated regime, in which gas-phase reactions
mostly lead to nucleation, and a surface-growth regime
occurring later in the synthesis process, where surface reactions
dominate. In contrast, for the same flow conditions,10 the one-
step model predicts nucleation due to complete consumption
of the TiCl4, followed by aggregation.
The differences between the detailed and single-step

chemistry models have been investigated in idealized, low-
dimensional configurations such as multienvironment plug flow
(PFR) or partially stirred reactors (PaSR),10 for which large
kinetic schemes are computationally affordable. However,
computational fluid dynamics (CFD)-based methods will be
needed to capture the effects of mixing and turbulence on
product properties more accurately than simple flow models.
CFD methods are significantly more expensive, especially when
the chosen combustion models rely on finite-rate chemistry,
which requires the solution of many transport equations for the
chemical species, and are thus limited in terms of the number of
chemical species they can afford. In particular, the relatively
large sizes of the detailed chemical models used so far (up to
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107 species10) prohibit their direct use in CFD, that is, without
resorting to equilibrium or flamelet models.13

Starting from the detailed mechanism of West et al.,11 the
objective of this work is therefore to develop a reduced
mechanism to describe the gas-phase chemical kinetics of
relevance for titania formation that retains an accurate
description of the most important chemical pathways and Ti
intermediates contained in the detailed mechanism, small
enough to be of practical use in turbulent combustion
frameworks based on finite-rate chemistry (for example
Large-Eddy Simulation/Probability Density Function (LES/
PDF) approaches,14 which can efficiently handle up to a few
dozen chemical species.15)
Numerous techniques have been developed to drastically

reduce the computation burden associated with detailed
chemistry description. A nonexhaustive list includes: (i)
automatically generated skeletal mechanisms through negligible
species and reaction elimination;16−22 (ii) dimension reduction
techniques, which further decrease the number of species or
degrees of freedom that need be considered, including chemical
lumping,23,24 mathematical lumping,25 Quasi-Steady-State
Assumptions (QSSA),26,27 Rate Controlled Constrained
Equilibrium (RCCE),28 Intrinsic Low Dimension Manifold
(ILDM),29 Reaction Diffusion Manifolds (REDIM),30 and
Invariant Constrained Equilibrium Edge PreImage Curve (ICE-
PIC);31 and (iii) storage/retrieval algorithms to reduce the
computational cost of repetitive kinetics calculations, including
In-Situ Adaptive Tabulation (ISAT)32 and Piecewise Reusable
Implementation of Solution Mapping (PRISM).33 Rather than
being in competition, these general approaches can be used in
combination with a compounding of the benefits.
In this work, we use the Directed Relation Graph with Error

Propagation (DRGEP) method18 to eliminate unimportant
chemical pathways from the chemical description and replace
appropriate species differential equations with quasi-steady state
approximations. With the detailed mechanism taken as
reference, DRGEP uses an error propagation algorithm to
quantitatively estimate the role of each species and reaction in
predicting a user-defined set of targets, thereby identifying the
most important reaction pathways. To be efficient, the
algorithm must be applied to a large number of gas
compositions (or chemical snapshots) of potential relevance
to the simulations of interest. Here, partially stirred reactor
(PaSR) simulations, as described for example in Ren and
Pope,34 are used to densely and conservatively sample the
composition space in regions potentially relevant for more
complex flame simulations. The same PaSR configurations are
also used to assess the accuracy of the resulting reduced models
through comparisons with predictions obtained with the
reference detailed mechanism.
This article is organized as follows: the reference detailed

kinetic mechanism,11,12,35,36 as used in previous work10 to
model flame synthesis of titania, is first described in the
“Detailed Chemical Description” section, followed by a
description of the PaSR configuration used here to develop
and validate reduced chemical models. The main features of the
DRGEP reduction technique and its application to the PaSR
configuration are then discussed in the “Model Reduction”
section, followed by a detailed account of the species and
reaction elimination process and the selection of quasi-steady
state species, done with extensive error quantification. A brief
analysis of the chemical pathways retained in the reduced
model concludes that section.

■ DETAILED CHEMICAL DESCRIPTION
The detailed kinetic mechanism that serves as reference in this
work has been obtained by combining three different
submechanisms for methane oxidation,35 TiCl4 oxidation,11,12

and hydrocarbon chlorination,36 as illustrated in Figure 1.

Detailed chemical kinetics for TiCl4 oxidation have been
developed by West et al.11,12 using density functional theory
(DFT) based quantum calculations. The resulting mechanism
contains 30 species and 66 reversible reactions to describe the
Ti oxidation process. In contrast to one-step approaches that
consider only the overall reaction,

+ → +TiCl O TiO 2Cl4 2 2 2 (1)

the detailed kinetics include a large number of intermediate
species of the form TixOyClz that undergo reactions such as
thermal decomposition, radical abstraction and disproportiona-
tion, oxidation, and dimerization. To describe nanoparticle
formation for the detailed mechanism proposed by West et
al.,12 three nucleation reactions were added by Mehta et al.9

In a flame, the Ti oxidation process is expected to be more
complicated, as interactions between fuel, precursor, and
oxidizer become significant and need to be taken into account.
The main purpose of the flame is to provide heat to initiate the
endothermic TiCl4 decomposition reactions (reactions R1, R2,
and R3 in Table 1 of West et al.11) leading to Ti oxides.
Methane (CH4) is typically used as the hydrocarbon fuel, and
its combustion is described here using the GRI-Mech 2.11
mechanism.35 Finally, the oxidation of TiCl4 to form TiO2 leads
to the formation of chlorine gas, Cl2. The presence of Cl2 can
lead to hydrocarbon chlorination; therefore, the methane
chlorination chemistry described in Shah and Fox36 is added to
the full kinetic scheme.
In summary, the chemical mechanism used in this work

contains 107 species and 1007 reactions (forward and backward
counted separately) to describe Ti oxidation in a methane
flame. Details on the individual reactions included in this
kinetic scheme can be found in the cited literature.9,12,35,36 This
mechanism has been analyzed in previous work9,10 and its
performances compared qualitatively to experimental data and
one-step kinetics results. Undoubtedly, future improvements
will be needed in the detailed mechanism to capture the
coupling between gas-phase and surface reactions37 and to
improve agreement with experiments. In this work, as our
objective is to validate the accuracy of the reduced mechanisms
relative to the detailed mechanism, predictions of the reduced

Figure 1. Kinetic submechanisms included in the detailed chemistry
description and main coupling chemical species. References for each
submechanism are A,35 B,9,11,12 and C.36
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mechanisms are compared to those of the detailed chemical
mechanism and not to experimental data.

■ SIMULATION CONFIGURATION
Partially Stirred Reactor. The idealized partially stirred

reactor (PaSR) is used here as the test configuration to extract a
reduced-order chemical model from the detailed, 107-species
mechanism described above. Inside a PaSR reactor, reaction
occurs and the mean thermochemical properties are assumed to
be statistically spatially homogeneous, but the fluid is
imperfectly mixed at the molecular level. As such, the PaSR
can be seen as a computationally inexpensive representation of
a single grid cell embedded in a large simulation of turbulent
combustion and is designed to access the broadest possible
range of compositions of potential relevance for more complex
flame simulations.
The reacting ideal gas-phase mixture, consisting of ns

chemical species, is assumed to evolve in the PaSR at a fixed
pressure p, so that the full thermochemical state, or
composition, of the mixture Φ is completely characterized by
the ns vector of species mass fractions Y and the mixture
temperature T: Φ ≡ Y, T, or equivalently, the species mass
fractions Y and the mixture enthalpy h: Φ′ ≡ {Y, h} . The
temperature being easily obtained from enthalpy (and
conversely), both representations can be used interchangeably.
The PaSR is continuously fed by a user-determined number nstr
of inflow streams of prescribed compositions Φstr. The reactor
contains a constant, even number np of particles, the nth
particle having a composition Φ(n). Those compositions evolve
in time by increment Δt due to mixing, reaction, and inflow and
outflow events.
In the inflow/outflow event, nin particles are selected at

random with equal probability, and their compositions are
replaced by inflow stream compositions. The integer number
nin and the inflow compositions are chosen according to the
user-specified mean residence time τres and streams mass flow
rates ṁstr

k=1...nstr, respectively. Note that inflow and outflow events
change the particle compositions in a discontinuous manner. In
contrast, reaction and mixing change the particle compositions
continuously and are treated as two fractional steps with an
operator-splitting scheme. In the mixing fractional step,
particles are paired and ordered so that particles n and n + 1
are partners for odd n (1 ≤ n < np). The compositions after the
mixing fractional step of partners n and n + 1 are computed
from the enthalpy-based compositions at time t as

τ

τ

Φ′ = Φ′ − Δ Φ′ − Φ′

Φ′ = Φ′ − Δ Φ′ − Φ′

+

+ + +

t t t t

t t t t

( ) ( ( ) ( ))

( ) ( ( ) ( ))

n m n n n

n m n n n

( ), ( )

mix

( ) ( 1)

( 1), ( 1)

mix

( 1) ( )

(2)

where τmix is the specified time scale for the pairwise mixing. At
each time step, npair particles are selected randomly with equal
probability and shuffled to change partners. The integer
number npair is chosen according to a user-specified pairing
time τpair, typically taken equal to τmix. The compositions after
mixing are converted back to their temperature representations
Φ(n),m, which then evolve under isobaric, adiabatic conditions
over a time Δt according to

Φ = Φt
t

tSd ( )
d

( ( ))
n m

n m
( ),

( ),
(3)

where S is the chemical source term defined by the user-
provided kinetic reaction mechanism, consisting of nr reactions.
This reaction fractional step finally yields the particle
compositions at t + Δt: Φ(n)(t + Δt) .

Conditions and Parameters. The partially stirred reactor
as described above serves two purposes in this work: First, it
allows us to quickly assemble a large set of sample diverse
compositions potentially relevant for TiO2 synthesis in
methane flame, a necessary prerequisite to apply the DRGEP
chemistry reduction technique. Second, it provides an ideal
setting to directly assess the ability of the generated reduced
kinetic models to reproduce the dynamics of the full chemical
scheme along a wide range of chemical trajectories, thereby
ensuring that all potentially important reaction pathways are
retained. Previous work10 has shown that inflow conditions play
a major role in determining the size and shape of titanium oxide
particles. Therefore, two different configurations will be studied
here. The first one, premixed in nature, injects mixtures of
TiCl4 and air, and CH4 and air, while the second one is
essentially nonpremixed, with TiCl4 and methane being
injected separately from the oxidizer. Those configurations
are representative of Flames A and D in the experimental work
of Pratsinis et al.3 and will therefore be labeled PaSR−A and
PaSR−D, respectively. The full list of parameters for PaSR−A
and −D is provided in Table 1.

■ DIRECTED RELATION GRAPH WITH ERROR
PROPAGATION (DRGEP)

To significantly accelerate the development of an appropriate
reduced chemical model, the automatic chemistry reduction

Table 1. PaSR−A and −D Simulation Parameters

Reactor Characteristics

residence time 0.01 s
mixing time 10−3 s
pairing time 10−3 s
time step 10−4 s
number of particles 100

Initial Conditions

temperature 2500 K
pressure 1 bar
N2 (mass fraction) 1

Inflow Conditions: PaSR−A

parameters stream 1 stream 2 stream 3

normalized streamflow rates 0.4721 0.1542 0.3537
temperature 333 K 1450 K 298 K
Ar (mass fraction) 0.08 0 0
CH4 (mass fraction) 0 0.185 0
N2 (mass fraction) 0.686 0.605 0.767
O2 (mass fraction) 0.209 0.21 0.233
TiCl4 (mass fraction) 0.025 0 0

Inflow Conditions: PaSR−D

parameters stream 1 stream 2 stream 3

normalized streamflow rates 0.1370 0.0026 0.8604
temperature 333 K 1100 K 450 K
Ar (mass fraction) 0.55 0 0
CH4 (mass fraction) 0.278 0.026 0
N2 (mass fraction) 0 0.512 0.767
O2 (mass fraction) 0 0.155 0.233
TiCl4 (mass fraction) 0.167 0.327 0
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technique DRGEP (Directed Relation Graph with Error
Propagation) is used.18 By analyzing production rates derived
from an ensemble of composition states, the method quantifies
the coupling between the species and reactions involved in a
chemical mechanism and a set of user-specified targets. The
main output from this analysis is a set of importance
coefficients, which will be referred to as DRGEP coefficients,
allowing us to rank species and reactions from most important
to least important for the prediction of the chosen targets.
Species and reactions with the lowest coefficients are then
removed from the mode. The main steps of the DRGEP
method are detailed below in the context of TiO2 synthesis in a
methane flame.
Reduction Targets. The first step of the DRGEP method is

to identify a set of nT targets ; , most often specific species or
heat release, that the reduced model will have to reproduce
accurately. In TiO2 synthesis, we are especially interested in the
prediction of O2 and nuclei precursor concentrations, in this
case, Ti5O6Cl8, both included as DRGEP targets, since they will
determine the nucleation rate:

=J k N [Ti O Cl ][O ]nucl av 5 6 8 2
2

(4)

where the pre-exponential factor is knucl = 1013 m6/(mol2·sec)
and Nav is the Avogadro number.9 It was shown by Mehta et
al.10 that detailed surface growth models, which involve all
TixOyClz intermediates in the calculation of the surface growth
source terms, significantly improve the description of TiO2
nanoparticle synthesis. Therefore, both TiCl4 and the sum of all
TixOyClz species mass fractions are added to the reduction
targets set. Finally, since the synthesis process is highly sensitive
to temperature, and according to common practices in
DRGEP-based reduction,18 heat release and CO mass fraction
are also added to ensure that the reduction procedure retains an
appropriate description of the methane oxidation process.
Sample Compositions Database. To evaluate the relative

importance of species and reactions for the set of targets,
DRGEP requires an ensemble of sample compositions +
representative of the simulations in which the reduced model is
going to be used eventually. We assume here that particles in a
PaSR simulation with inflow conditions matching the turbulent
flames of interest will follow trajectories in composition space
that are close to those they would encounter in the actual flame,
an assumption commonly done when deriving reduced models
for turbulent flame simulations.38 Therefore, we randomly
sample compositions encountered in the two PaSR test
configurations, PaSR−A and −D, until we have a database
large enough to encompass all relevant chemical processes and
dynamics. The database used in this work consists of 20 000
distinct chemical compositions.
DRGEP Importance Coefficients. Once an appropriate

sample composition database has been obtained, each sample is
analyzed by the DRGEP methodology to quantify the
importance of species and reaction, first at the individual
sample level and then for the overall chemical process. A brief
summary of how the importance coefficients are computed is
provided next.

• Direct interaction coefficients. Direct interaction
coefficients are defined as the measure of the coupling
between two species that are directly related through an
elementary reaction, that is, two species that appear
concurrently in the same reaction. The coupling

coefficient between two such species A and B for a
given composition Φ is expressed as

ν ωδ
≡

|∑ |=r
P Cmax( , )

i n i i
i

AB
1, ,A B

A A

R

(5)

where the production and consumption of species A are
defined as

∑ ν ω=
=

P max(0, )
i n

i iA
1,

,A
R (6)

∑ ν ω= −
=

C max(0, )
i n

i iA
1,

,A
R (7)

In the above equations, ωi are the net reaction rate of the
ith reaction evaluated from composition Φ and the
detailed chemical model, νi,A is the stoichiometric
coefficient of species A in reaction i, and

δ =
⎧⎨⎩

i1 if the th reaction involves species B

0 otherwise
i

B
(8)

• Path-dependent coefficients. To go beyond direct
interactions, DRGEP defines path-dependent coefficients
that quantify the coupling between any directly or
indirectly related species A and B. Assuming geometric
damping, and again, for a given composition Φ, the
coupling between A and B through a reaction path p is
written as

∏=
=

−

+
r rp

i

n

S SAB,
1

1

i i 1
(9)

with S1 = A, Sn = B, Si being on the reaction path p that
links A and B, n being the number of reactions involved
in path p. Because many paths can exist linking A to B,
only the most important one is retained:

≡R rmax
p

pAB
all paths

AB, (10)

RAB can be interpreted as the magnitude of the error
made in the prediction of species A if species B is
removed.18

• Target-specific coefficients. In a similar way, the overall
importance of B to the target set ; for a given
composition Φ is defined by

≡ΦR Rmax
T

TB,
all targets

B
(11)

• Extension to multiple composition states. The above
results can be extended to any given ensemble of
compositions + to yield the DRGEP importance
coefficient of species B over +:

=
Φ∈ ΦR RmaxB B,

+
+ (12)

A similar procedure can be derived to calculate an importance
coefficient of any reaction r, Rr

+. For additional details, the
reader is referred to Pepiot and Pitsch.18 In the following, we
will refer to the nS-vector of species importance coefficients
over database + as R S,+ , the ith element corresponding to the
ith species in the mechanism, and to the nR-vector of reaction
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importance coefficients as R ,+ 9 , the jth element corresponding
to the jth reaction in the mechanism.

■ MODEL REDUCTION

Automatic Reduction and Error Evaluation Proce-
dure. The automatic reduction procedure proceeds through
two distinct steps. In the first one, a list of kinetic models of
decreasing complexity, is established a priori using the DRGEP
methodology. In contrast to previous use of DRGEP, however,
species and reaction eliminations are combined in a single step
thanks to an a priori error estimate on production rates. This
step is carried out on the sample database itself and does not
involve any PaSR simulations, which keep the computational
cost to a minimum. The details of the algorithm are provided
below. In this algorithm, ST

(n),D and ST
(n),R are the chemical source

terms evaluated for sample (n) in the database with the full
model and the ACTIVE part (species and reaction) of the
model, respectively.

In the second stage, the test configurations PaSR−A and
PaSR−D are simulated using each of the reduced models
generated in the first stage, and a posteriori (actual) errors on
targets are computed, defined for any target T as

∫
∫

ε =
|⟨ ⟩ − ⟨ ⟩ |

|⟨ ⟩ |

T t T t t

T t t

( ) ( ) d

( ) d
T

t R D

t D
0

0

end

end

(13)

In this equation, ⟨T⟩(t) designates the average at time t of
quantity T over all particles contained in the PaSR, and tend is
taken here as 15 PaSR residence times. Those errors are plotted
as a function of the number of species retained in the model for
both PaSR conditions for temperature (Figure 2a), O2 (Figure
2b), TiCl4 (Figure 2c), ∑[TixOyClz] (Figure 2d), and
nucleation rate evaluated as the consumption rate of precursor
Ti5O6Cl8, provided by eq 4 (Figure 2e), while Figure 2f) shows
how the number of reactions varies as the number of species
decreases. For all targets, we observe a mostly monotonic
increase of errors as the number of species is reduced, until the
reduction becomes so severe that errors become of order 1.
The 61-species mechanism, indicated in all graphs by a vertical
line, is the smallest acceptable model generated by the DRGEP
procedure: past this model, Ti5O6Cl8 consumption rate errors
become unacceptably large.

Additional Reduction. Manual Inspection. To comple-
ment the automatic procedure, the 61-species mechanism
obtained above is further reduced using sensitivity analysis and
reaction pathways analysis. A semiautomatic procedure is used,
in which a set of additional species and reactions that could be
potentially removed is provided by the user. Appropriate
mechanisms are then generated and errors automatically
computed (eq 13). The user is then prompted to accept or
reject the additional species and reactions eliminations. An
additional 10 species are removed through this step, and the
corresponding errors on targets are indicated as diamonds in
Figure 2.

QSS Assumptions. To increase the speed up of the skeletal
mechanism obtained through species and reaction elimination,
quasi-steady state assumptions are introduced that replace part
of the differential equations by algebraic equations, which are

Figure 2. Error in PaSR predictions as a function of the number of species retained in the skeletal model during reduction: (a) temperature, (b) O2,
(c) TiCl4, (d) ∑[TixOyClz], (e) nucleation rate evaluated from Ti5O6Cl8 consumption rate (eq 4), and (f) number of reactions retained in the
model. Filled symbols: PaSR−A; open symbols: PaSR−D. Circles: automatic reduction; diamonds: manual inspection of the 61-species automatically
generated mechanism; squares: with quasi-steady state assumption.
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much faster to evaluate. The methodology of Pepiot39 is used,
in which a steady state parameter RQSS, B is introduced to
quantify the suitability of a given species B to be set in steady
state:

τ=
Φ∈ Φ Φ ΦR Rmax( [B] )QSS

D

S
,B B, B, (14)

where

τ = −
∂ −

∂Φ
Φ Φ

Φ

−⎡
⎣⎢

⎤
⎦⎥

P C( )
[B]B,

B, B,
1

(15)

The RQSS values of species retained in the 51-skeletal model are
plotted in Figure 3. While all species with low RQSS are typically

suitable QSS species, we add an additional constraint that the
resulting algebraic system to evaluate the concentrations of the
QSS species remain linear. With this constraint, 15 species are
set in steady state, namely: CH2(S), CH2, CH, C2H3, TiO2Cl2,
HCO, CH3O, Ti3O4Cl4, C2H5, CH2Cl, CHCl2, CH2Cl2,
CHCl3, H2O2, and Ti2O3Cl3. Those species are indicated by
an extra square in Figure 3.
Final Reduced Model. The final model consists of 36

species (including inert nitrogen and argon), 15 quasi-steady
state species, and a total of 237 reactions, forward and backward
counted separately. Error levels are small, of the order of 1% for
all targets, except for Ti5O6Cl8 consumption rate, that has an
error level of roughly 30% over both PaSR test configurations.
Because QSS assumptions significantly increased the error for
this target, better agreement would be obtained by restricting

the QSS assumption to non-Ti species. However, it must be
pointed out that, in the absence of relevant, quantitative
experimental kinetic data to validate the chemistry, there is
considerable uncertainty in the original model itself, which
should be kept in mind when assessing the validity of the
reduced scheme. Figure 4 provides some visualization of the
errors reported in Figure 2 for temperature, TiCl4, and
∑YTixOyClz. It can be observed that the temperature predicted
by the reduced model follows very closely the detailed solution,
except over a short period of time, where T is under-predicted
(illustrated in Figure 4a.). No such differences can be found for
the Ti species (Figure 4b,c).
To ensure that the reduction procedure did retain an

appropriate description of the methane oxidation chemistry, the
laminar flame speed of methane/air unstretched premixed
flame is computed a posteriori using the reduced models and
compared to the detailed predictions in Figure 5.Very good

agreement is obtained over a wide range of equivalence ratios,
with only a small discrepancy observed close to stoichiometry,
bringing some confidence that the reduced model can be used
in both nonpremixed and premixed configurations.
Figure 6 compares the computational cost of using various

models to simulate 10 residence times of the PaSR test
configurations. Data have been normalized by the time required
by the detailed, 107-species model. Computational cost
commonly scales quadratically with the number of species
and linearly with the number of reactions. Because the
automatic reduction procedure simultaneously removes both
species and reactions, a slightly better scaling is observed, with a
factor of 5 on the timing obtained by dividing the number of
species by two. The introduction of quasi-steady state
assumptions contributes to reduce the computational time

Figure 3. Steady state coefficients for each species retained in the
skeletal model (×). Squares indicate species set in quasi-steady state in
the final model.

Figure 4. Comparison of actual profiles of temperature and relevant species in the nonpremixed PaSR, obtained using the detailed mechanism (thick
lines) and the skeletal + QSS model (dashed line): (a) temperature, (b) TiCl4 mass fraction, (c) ∑YTixOyClz.

Figure 5. Prediction of methane/air laminar flame speed: comparison
between detailed (solid line), 51-species skeletal (dashed line), and 51-
species skeletal with quasi-steady state assumption (filled symbols).
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required, yet slightly less so than direct species and reaction
elimination. However, no transport equation is required for
QSS species in CFD simulation, which will lead to additional
gains in storage and CPU time.
Finally, both test PaSR are run for five residence times,

during which individual reaction rates are integrated. The
resulting data can be postprocessed into the flowchart shown in
Figure 7, which describes the observed main chemical pathways

leading from TiCl4 to the nuclei precursor Ti5O6Cl8, as
described by the simpler, final reduced model. The titanium
oxidation process still requires 13 Ti-containing species
interacting through 50 reactions. Arrows indicate how Ti
atoms get transferred from initial TiCl4 to final Ti5O6Cl8. On
each arrow going from species A to species B, two numbers can
be found. The first one, written in bold, indicates how much of
species A gets converted into species B. The second one, in
italic, indicates how much of species B comes from species A.
Some observations can be made from this graph:

• While the number of reactions involving Ti species is still
high, the reduction procedure weeded out a lot of minor
interactions between Ti species, allowing for a clear path
from TiCl4 to Ti5O6Cl8 to emerge, along which the
number of Ti atoms in the molecules progressively
increases.

• However, this path is not as linear as what is commonly
found in reduced models for hydrocarbon combustion,
with species interacting significantly with several other
species. Each of these interactions are important for the
overall production of Ti5O6Cl8 precursors and, hence, for
the prediction of the nucleation rate. Therefore, no
obvious additional simplification of the kinetic model can
be done at this point.

Further investigation of the average mass fractions of the
various Ti-containing intermediates, shown in Figure 8 for both

A and D PaSR configurations, confirms previous observations
by Singh40 that the predominant, stable intermediates are
TiOCl2 monomers and Ti2O2Cl4 dimers, all other Ti-
containing species having mass fractions on average more
than an order of magnitude lower than those two species.

■ CONCLUSIONS
Detailed chemistry is thought to be important for modeling
TiO2 nanoparticle synthesis in flame reactors, but due to their
typically large sizes, the use of detailed kinetic schemes is
prohibitive in turbulent flow solvers using finite-rate chemistry
approaches. In this work, we provided a systematic method-
ology to generate compact chemical models that can still
reproduce the key dynamic characteristics of gas-phase titanium
oxidation in a hydrocarbon flame predicted using detailed
chemistry. Using the simpler partially stirred reactor model as a
substitute for more complex turbulent flame configurations, we
obtained and validated (using the detailed model as reference)
a 36-species model and 237 reaction steps. This reduced
mechanism provides a significant computational speed-up
compared to the original chemical model. We observed that
the titanium oxidation chemistry proposed in the literature12

can be significantly simplified, up to a point where a clear path
from reactant to product emerges. Yet, the number of Ti
species in the final model required to maintain the nucleation
rate predictions at an acceptable level of accuracy remains

Figure 6. Comparison of the computational cost between detailed and
reduced models.

Figure 7. Major chemical pathways in the oxidation of TiCl4 as
identified from nonpremixed PaSR results using the skeletal model.

Figure 8. Average mass fraction of Ti-containing intermediate species
observed in PaSR−A and PaSR−D simulations.
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relatively high (10 out of 36) due to the complexity of the
interactions between Ti species. We also showed that
hydrocarbon chlorination chemistry plays a minor role in the
flame dynamics, with only a couple of species retained in the
final model. Finally, the reduced model development being for
the most part fully automatic, any improvement in Ti kinetic
modeling can be reflected quickly in the reduced model, a
significant benefit of DRGEP and related techniques over fully
manual reduction.
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